CHAPTER 7 - LRFD

DESIGN CRITERIA - NEW AND RECONSTRUCTION PROJECTS

7.01 GENERAL

7.01.01 Design Specifications
7.01.02 Design Method
7.01.03 Design Stresses
7.01.04 Design Loading
7.01.05 Fatigue Resistance
7.01.06 Deflection
7.01.07 Temperature Range
7.01.08 Vertical Clearance
7.01.09 Longitudinal Deck Grades
7.01.10 Temporary Support Systems and Construction Methods (8-6-92)
7.01.11 Clear Zone Considerations (8-6-92)
7.01.12 Sight Distance Considerations (5-6-99)
7.01.13 Concrete QA/QC (5-6-99)
7.01.14 Skew Policy (8-20-2009)
7.01.15 Shoulder Widths for Work Zone Safety and Mobility (8-20-2009)
7.01.16 Redundancy (8-20-2009)
7.01.17 Part Width Construction (11-28-2011)
7.01.18 Horizontally Curved Girder Bridges (11-28-2011)
7.01.19 Accelerated Bridge Construction (6-17-2013)
7.01.20 Stream/River Crossing Low Chord Elevation for Navigation (9-24-2018)
CHAPTER 7 DESIGN CRITERIA-NEW AND RECONSTRUCTION PROJECTS INDEX (continued)

7.02 SUPERSTRUCTURE

7.02.01 Structure Type
7.02.02 Beam Spacing
7.02.03 Beam Material Selection
7.02.04 Structural Steel Grades - Available Thicknesses
7.02.05 Bearings
7.02.06 Precamber - Steel Beams
7.02.07 Moment of Inertia - Composite Beam
7.02.08 Multiple Span Design
7.02.09 Rolled Beam Design
7.02.10 Plate Girder Design (Welded)
7.02.11 Stiffeners
7.02.12 Welding
7.02.13 Field Splices in Plate Girders
7.02.14 Diaphragms and Crossframes
7.02.15 Shear Developers
7.02.16 Lifting Lugs
7.02.17 Painting
7.02.18 Prestressed Concrete Design
7.02.19 Slabs
7.02.20 Slab Reinforcement
7.02.21 Continuous Beam Design - Steel
7.02.22 Screeding
7.02.23 Stay-in-Place Forms
7.02.24 Joints in Deck Slabs
CHAPTER 7 DESIGN CRITERIA-NEW AND RECONSTRUCTION PROJECTS INDEX (continued)

7.02.25 Pavement Seats
7.02.26 Drain Castings
7.02.27 Sidewalks
7.02.28 Railing
7.02.29 Fencing
7.02.30 Precast Three Sided/Arch Culverts (8-20-2009)
7.02.31 Deck Replacements (11-28-2011)
7.02.32 Ride Quality (8-20-2012)

7.03 SUBSTRUCTURE

7.03.01 Abutment Design
7.03.02 Footing Design
7.03.03 Pier Design
7.03.04 Cofferdams
7.03.05 Subfootings
7.03.06 Tremie Seal Design
7.03.07 Excavation
7.03.08 Steel Sheet Piling
7.03.09 Piles
7.03.10 Slope Treatment Under End Spans
7.03.11 Concrete Sealers (5-1-2000)
7.03.12 Mechanically Stabilized Earth (MSE) Wall Requirements (8-20-2009)
7.03.13 Drilled Shafts (3-26-2018)

7.04 STEEL REINFORCEMENT (11-28-2011)

7.04.01 Steel Reinforcement
7.04.02 Stainless Steel Reinforcement
CHAPTER 7 DESIGN CRITERIA-NEW AND RECONSTRUCTION PROJECTS INDEX (continued)

7.05 PEDESTRIAN FENCING

7.05.01 Electrical Grounding System (8-6-92)
7.05.02 Fence Fabric (8-6-92)
7.05.03 Fence Posts (8-6-92)

7.06 RECONSTRUCTION PROJECTS

7.06.01 Placement of Temporary Barrier
7.06.02 Concrete Anchors (5-6-99)
7.06.03 Substructure Protection
7.06.04 Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

7.07 APPROACH ITEMS

7.07.01 Guardrail
7.07.02 Curb and Gutter for Rural Bridges
7.07.03 Bridge Approach Pavement (5-6-99)

7.08 UTILITY ITEMS (8-20-2009)

7.08.01 General
7.08.02 Plan Distribution Process for Utility Coordination
7.08.03 Including Utility Work in Contracts

Appendix 7.03.08 D. Sheet Piling Section Moduli (10-24-2001)

Appendix 7.06.04 Detail of Temporary Support From Below and Coefficients for Designing Jack Base Plates
7.01

GENERAL

7.01.01

Design Specifications (8-20-2009)

In general, bridges in Michigan carrying vehicular traffic are designed according to the current edition of the LRFD Bridge Design Specification published by the American Association of State Highway and Transportation Officials (AASHTO). The exceptions to changes in AASHTO requirements are presented in this volume of the Design Manual.

The AASHTO specifications are also applied in the design of pedestrian bridges and major structures such as retaining walls and pumphouses.

Bridges carrying railroads are designed according to the current specifications of the American Railway Engineering and Maintenance-of-Way Association Specifications (AREMA).

7.01.02

Design Method (8-20-2009)

The design of all structural elements shall satisfy Service Limit State and/or Strength Limit State requirements of the AASHTO LRFD Bridge Design Specifications.

7.01.03

Design Stresses (12-5-2005)

Concrete: Grade S2, S2M, P1M *

\[f'c = 3000 \text{ psi} \]

Concrete: Grade D, DM *

\[f'c = 4000 \text{ psi} \]

Steel Reinforcement

\[f_y = 60,000 \text{ psi} \]

Steel Reinforcement:

Stirrups for

Prestressed Beams

\[f_y = 60,000 \text{ psi} \]

Prestressed Concrete **

\[f'c = 5000 - 8000 \text{ psi} \]

Prestressed Concrete Compressive Strength at Release

\[f_{ci} = 7000 \text{ psi (max)} \]

Prestressing Strands

\[f_{pu} = 270,000 \text{ psi} \]

High Strength Bolts:***

Organic zinc rich primer (Class B)

\[F_s = 32,000 \text{ psi} \]

* Use Grade S2M, P1M and DM in all trunkline projects in Metro, University, Grand, Bay, Southwest and North Regions. Use Grade S2 and D in Superior Region and on non-trunkline projects.

** See Subsection 7.02.03.

7.01.04 Design Loading (8-20-2009)

The design loading is as specified in A 3.6.1.2 of AASHTO LRFD with the exception that the design tandem as specified in a.3.6.1.2.3 shall be replaced with a single 60 kip load.

A. Interstate and Trunklines (8-20-2009)

Vehicular live loading on the roadways of bridges designated HL-93 Mod, shall consist of 1.2 times the combination of the:
- Design truck or single 60 kip load
- Design lane load

Where 90% of two design trucks are combined with 90% of the effect of a lane load for both negative moment and pier reactions per A.3.6.1.3 a 1.2 multiplier shall be applied to the resulting moment or load. Each design lane under consideration shall be occupied by either the design truck or single 60 kip load, coincident with the lane load, where applicable. The loads shall be assumed to occupy 10.0 ft. transversely within a design lane.

The design truck and design lane load are specified in AASHTO LRFD A 3.6.1.2.2 and A 3.6.1.2.4.

B. Local Roads and Streets (8-20-2009)

Structures carrying local roads or streets are to be designed according to county or city standards. The minimum design load acceptable for streets or primary county roads is HL-93 Mod loading as specified in this entire section. (8-6-92)

The load modifying factor, η (eta), related to ductility, redundancy, and operational importance, shall be considered for less important roads (AASHTO LRFD A 1.3.2.1).

7.01.04 (continued)

C. Pedestrian and Bicycle (Nonmotorized) Bridges

Pedestrian and bicycle (nonmotorized) bridges shall be designed according to the current AASHTO LRFD Bridge Design Specifications A 3.6.1.6. and current edition of the Guide Specifications for Design of Pedestrian Bridges. The assumed live load is 90 LBS/SFT. Consideration shall also be given to maintenance vehicles with regard to design loadings and horizontal clearances. For Clear Bridge Width, w, greater than 10'-0", use an H10 truck. For w between 7'-0" and 10'-0", use an H5 truck. Where vehicular access is prevented by permanent physical methods (bollards, gates, etc.) or for w less than 7'-0" the bridge does not need to be designed for a maintenance vehicle. (8-20-2009) (11-28-2011) (5-25-2015)

D. Railroad Bridges

Railroad bridges are designed according to the current AREMA Specifications, with the Cooper loading established by the railroad company.

E. Section combined with 7.01.04 C. (5-25-2015)

F. Deck Replacement, Bridge Widening or Lengthening

When an existing deck is to be replaced or the structure is to be widened or lengthened, the proposed reconstruction should be designed according to LRFD where practicable. In cases where LRFD cannot be used, the design method shall be approved by the MDOT Bridge Design Supervising Engineer. (8-20-2009) (11-28-2011) (3-26-2018)

G. Ice Force on Piers

All piers that are subjected to the dynamic or static force of ice shall be designed according to the current AASHTO LRFD Bridge Design Specifications. (8-20-2009)
7.01.04 (continued)

Design Loading

H. Future Wearing Surface

All new bridges and bridge replacements shall be designed for a future wearing surface load of 25 LBS/SFT. (5-6-99)

I. Stay In Place Forms

For new bridges or superstructure replacements a design load of 15 LBS/SFT should be added for the use of stay in place metal forms. (5-6-99)

J. Barrier Loads

For purposes of beam design, the barrier dead load can be distributed equally to all beams. (AASHTO Std. Specs 17th edition 3.23.2.3.1.1 & AASHTO LRFD 4.6.2.2) However, when calculating superstructure loads on the substructure, particularly for cantilevered pier caps, 75% of the barrier dead load should be applied with the fascia beam load. The remaining 25% of the barrier load should be applied with the first interior girder load. (8-20-2009)
7.01.05 Fatigue Resistance

The nominal fatigue resistance shall be determined using a structure design life of 75 years and the truck ADTT averaged over the design life. A note providing this information should be placed on the General Plan of Structure sheet (see Section 8.05). Design shall be according to AASHTO LRFD Bridge Design Specifications 3.6.1.4 & 6.6.1. (8-20-2009)

7.01.06 Deflection

A. Deflection Limits (8-20-2009)

Deflection limits shall be as specified in the current AASHTO LRFD Bridge Design Specifications A 2.5.2.6.2.

The live load shall be taken from A 3.6.1.3.2.

B. Cantilever Deflection Computation

In computing the live load plus impact deflection of cantilevers of composite anchor span, the gross section of the anchor span is to be used. The length of the composite section for this analysis is to be assumed to extend from the bearing line to the point of dead load contraflexure.

7.01.07 Temperature Range

A. The temperature range used to determine thermal forces and movements shall be in conformance with AASHTO "cold climate" temperature range.

B. The type of structure used in determining the temperature range, per AASHTO, shall be defined by the material of the main supporting members of the superstructure or substructure being considered.

7.01.08 Vertical Clearance

A. Requirements

The desired vertical bridge underclearances should be provided as indicated in the following table. If the desired underclearances cannot be provided, then the minimum underclearances shall be met. Where it is considered not feasible to meet these minimums, a design exception shall be requested from the Engineer of Design Programs and subsequently to the FHWA Area Engineer on "FHWA Oversight" (non exempt) projects and from MDOT Engineer of Design Operations - Structures Section on "MDOT Oversight" (exempt) projects (see Section 12.03 also). See the vertical clearance design exception matrix in Appendix 12.02.01. Requests to further reduce the underclearance of structures with existing vertical clearance less than indicated in the following table should be made only in exceptional cases.

7.01.08 (continued)

Vertical Clearance

A. Requirements

VERTICAL CLEARANCE REQUIREMENT TABLE (8-20-2009) (6-22-2015)

<table>
<thead>
<tr>
<th>Route Classification Under the Structure</th>
<th>All Construction (Desired)</th>
<th>New Construction (Min *)</th>
<th>Road 4R Construction (Min *)</th>
<th>Bridge 4R Construction (Min *)</th>
<th>3R Construction (Min *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeways</td>
<td>16'-3"</td>
<td>16'-0"</td>
<td>16'-0"</td>
<td>16'-0"</td>
<td>16'-0"</td>
</tr>
<tr>
<td>NHS Arterials (Local & Trunkline)</td>
<td>16'-3"</td>
<td>16'-0"</td>
<td>Maintain Existing** and 14'-6" Min</td>
<td>16'-0"</td>
<td>Maintain Existing** and 14'-0" Min</td>
</tr>
<tr>
<td>Non NHS Arterials (Local & Trunkline)</td>
<td>16'-3"</td>
<td>14'-6"</td>
<td>Maintain Existing** and 14'-6" Min</td>
<td>Maintain Existing** and 14'-6" Min</td>
<td>Maintain Existing** and 14'-0" Min</td>
</tr>
<tr>
<td>Collectors, Local Roads & Special Routes(1)</td>
<td>14'-9"</td>
<td>14'-6"</td>
<td>Maintain Existing** and 14'-6" Min</td>
<td>Maintain Existing** and 14'-6" Min</td>
<td>Maintain Existing** and 14'-0" Min</td>
</tr>
</tbody>
</table>

3R = Rehabilitation, Restoration, Resurfacing

* Minimum Vertical Clearance must be maintained over complete usable shoulder width.

** Existing vertical clearances greater than or equal to the minimums shown may be retained without a design exception. Vertical clearance reductions that fall below the minimums for new construction require a design exception. (6-22-2015)

(1) Special Routes are in Highly Urbanized Areas (where little if any undeveloped land exists adjacent to the roadway) where an alternate route of 16'-0" is available or has been designated. Bridges located over Special Routes in Highly Urbanized Areas can be found on the MDOT website at: http://mdotcf.state.mi.us/public/design/files/englishbridgemanual/Exempt_Structures.pdf. (5-28-2013)

Ramps and roadways connecting a Special Route and a 16'-0" route require a vertical clearance minimum of 14'-6" (14'-9" desired). Ramps and roadways connecting two 16'-0" routes require a vertical clearance minimum of 16'-0" (16'-3" desired). (8-20-2009)

4R = Reconstruction

Information on the NHS systems can be obtained by contacting the Statewide Planning Section, Bureau of Transportation Planning or found on the MDOT website at: http://www.michigan.gov/mdot-nfc (11-28-2011)

Pedestrian bridges are to provide 1'-0" more underclearance than that required for a vehicular bridge. For Freeways (Interstate and non Interstate), including Special Route Freeways, the desired underclearance shall be 17'-3" (minimum 17'-0"). (8-20-2009)

A vertical underclearance of 23'-0" is required for highway grade separations over railroads when constructing a new bridge or removing the existing superstructure. For preventative maintenance, rehabilitation and deck replacement projects the existing railroad vertical underclearance does not need to be increased unless requested by the Railroad. (11-28-2011)

Clearance signs are to be present for structures with underclearance of 16'-0" or less (show dimensions 2" less than actual). See http://mdotcf.state.mi.us/public/tands/plans.cfm for additional information and guidelines. (8-20-2009) (11-28-2011) (11-21-2013)
7.01.08 (continued)

Vertical Clearance

A. Requirements

For shared use paths (pedestrian and bicycle), the vertical clearance to obstructions, including overhead fencing, shall be a minimum of 8'-6" (10'-0" desired). However, vertical clearance may need to be greater to permit passage of maintenance and emergency vehicles. In undercrossings and tunnels, 10'-0" is desirable for vertical clearance. See AASHTO’s Guide for the Development of Bicycle Facilities. (9-2-2003)

B. Interstate Vertical Clearance Exception Coordination (8-20-2009) (4-23-2018)

In addition to normal processing of design exceptions, all proposed design exceptions pertaining to vertical clearance on Interstate routes including shoulders, and all ramps and collector distributor roadways of Interstate to Interstate interchanges will be coordinated with the Surface Deployment and Distribution Command Transportation Engineering Agency (SDDCTEA). The only Interstate routes the SDDCTEA is interested in are the routes that require a 16'-0" vertical clearance. These routes include all the Interstate system including US -131 between I-196 and I-96 (this roadway is technically I-296 but not signed as such). In addition to the Interstate route requirements listed above, coordinate variances to the required vertical clearance on Strategic Highway Network (STRAHNET) (interstate/non-interstate) with SDDCTEA, including US - 23 between Ohio state line and I - 75 south of Flint. This requirement does not apply to Special Routes (1). (12-5-2005) (7-23-2018)

7.01.08 (continued)

MDOT (or its Consultant) is responsible for coordinating exceptions on all projects regardless of oversight responsibilities. MDOT will send a copy of all requests, and responses, to the FHWA. Michigan Interstate Vertical Clearance Exception Coordination, MDOT Form 0333, is available from MDOT web site.

Requests for coordination shall be emailed to: usarmy.scott.sddc.mbx.tea-web@mail.mil

Contact with inquiries:
Douglas E. Briggs, P.E., 618-220-5229
douglas.e.briggs.civ@mail.mil
or
Grant E. Lang, 618-220-5216
grant.e.lang.civ@mail.mil

Physical mailings:
Highways for National Defense
ATTN: SDDCTEA
1 Soldier Way
Scott AFB, IL 62225

Fax: 618-220-5125

MDOT (or its Consultant) shall verify SDDCTEA receipt of the request. If no comments are received within ten working days, it may be assumed that the SDDCTEA does not have any concerns with the proposed design exception.
Longitudinal Deck Grades (11-28-2011)

Longitudinal grades should be provided to facilitate deck surface drainage. A desirable minimum grade (or minimum projected tangent grade for vertical curves) is typically 0.5%, but grades of 0.3% may be used. When it is necessary to use grades that are flatter than 0.3%, provide adequate deck drainage with drains and downspouts. In addition, close attention to drainage is critical for sag and crest vertical curves when the K value (rate of grade change) is greater than 167 where,

\[K = \frac{L}{A} \]

\(L = \) Length of vertical curve, feet
\(A = \) Algebraic difference in grades, percent

Consider alignments that locate vertical curves outside the limits of the structure where the desirable minimum longitudinal grades can be achieved.

Structure on 1% or steeper grades should be fixed to the substructure at the lower end of structure where practicable. (9-2-2003)

Temporary Support Systems and Construction Methods

Where construction procedures will require a temporary support system, the plans shall note the loading that will be imposed on the system and the allowable stresses that can be assumed for the supporting soil. (8-6-92)

Where a construction sequence is critical, where there are restrictions on access for construction, or where the method of temporary support is not obvious, the plans shall provide an acceptable system that the contractor may employ. Alternatives may be proposed by the contractor, but these must be reviewed and approved by the Engineer if they are to be substituted. This review is to insure that:

A. appropriate design specifications and permit limitations have been complied with, and

B. any temporary or permanent stresses imposed on the completed structure are within allowable limits.

C. possible vibration induced damage to existing structures and utilities is identified and mitigated. (11-28-2011)
7.01.11
Clear Zone Considerations

(8-6-92) If possible, substructure units should be located outside the clear zone, as defined by current AASHTO Roadside Design Guide. Where this is not feasible, the unit shall be shielded from impact by errant vehicles.

7.01.12
Sight Distance Considerations

When designers are developing shoulder widths on structures or pier offsets from pavement edges, sight distance should be considered. MDOT policy has set bridge (shoulder) widths 2’ (offset) greater than AASHTO widths for safety considerations of the traveling public. Consult with Traffic & Safety Geometric Section for guidance and see Bridge Design Guides 6.05 Series & 6.06 Series. (5-6-99) (9-21-2015)

7.01.13
Concrete QA/QC

The provisions for Concrete QA/QC do not apply to bridge deck overlay mixtures or substructure patching. (12-5-2005)

7.01.14
Skew Policy (12-5-2005)

Skewed cross sections and stresses resulting from them must be considered when designing structures. Where possible, avoid excessive skews by moving abutments back and squaring them off (decreasing skew angle). Where the skew cannot be avoided, the engineer shall perform the necessary analyses to account for the skew.

\[\theta = \text{skew angle} = \text{angle measured from line perpendicular to bridge centerline to support reference line} = 90^\circ - \text{angle of crossing}. \]

<table>
<thead>
<tr>
<th>Skew Angle</th>
<th>Design Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta \leq 30^\circ)</td>
<td>Standard design using approximate methods</td>
</tr>
<tr>
<td>30' < (\theta \leq 45^\circ)</td>
<td>Special design using refined methods.*</td>
</tr>
<tr>
<td>(\theta > 45^\circ)</td>
<td>Use of angles greater than 45° must be approved through Bridge Design. Refined methods of design are also required.*</td>
</tr>
</tbody>
</table>

*Refined methods shall include using finite element methods of analysis to address girder roll, torsion, bearing restraints, bearing rotations, thermal movement direction and amount, cross frame loading, camber detailing and deck edge/end reinforcement.
7.01.15
Shoulder Widths for Work Zone Safety and Mobility (8-20-2009) (6-16-2014)

For 2 lane freeway and interstate new bridge construction and reconstruction (superstructure replacement and deck replacement) the standard bridge shoulder widths shall be 14'-10". This will provide increased safety and mobility for future maintenance of traffic. The cross section will provide part width bridge construction with traffic being maintained on two 11 ft. lanes with 1 ft. shy distance on each side. For cross section see Bridge Design Guide 6.05.01A.

An MDOT internal design exception will be required for 4R projects when the shoulder width is not met. The Region Systems Manager shall determine the required shoulder width at the scoping of the projects.

Designers should layout beam spacing to accommodate future part width reconstruction. In most cases beams at centerline of structure should be avoided. (11-28-2011) (12-17-2018)

Bridge approach guardrail and bridge approach curb and gutter will be affected as a result of the widened shoulders and must be addressed in the design of the approaches. If the increased shoulder width is deemed necessary on reconstruction projects substructure widening may become necessary.

7.01.16
Redundancy (8-20-2009) (9-17-2012)

Consideration should be given to providing redundancy in bridge designs. Avoid non-redundant schemes if possible. All non-redundant or fracture critical designs shall be approved by the Engineer of Bridge Design.

7.01.17
Part Width Construction (11-28-2011)

For existing bridges used to maintain traffic, the structural performance of the in-service portion of the structure shall be evaluated with respect to stage demolition and adjacent construction.

To the extent possible, plans shall show location of existing spread footings with respect to proposed construction.

Unbraced excavations for new substructures shall not extend below the bearing elevation of adjacent spread footing foundations.

Drilled excavations adjacent to in-service spread footing foundations shall be cased to prevent undermining.

For part-width construction of bridges, provide a minimum of 6' between the centerline of temporary sheeting (along the stage line) and the existing substructure sawcut line. This will allow for the width of sheeting and any required whalers and/or tiebacks. (2-26-2018)
Horizontally Curved Girder Bridges
(11-28-2011)

At a minimum, refined analysis shall address primary structural members, including the beams and cross frames of horizontally curved steel beams during all phases of the construction process. Special consideration shall be given to part width construction structures. At a minimum, refined methods shall address camber detailing, girder stress, cross frame loading, girder roll, and torsional load on the beams/girders.

Shoring (temporarily supporting) may be necessary to prevent deflections during part width construction and maintenance of traffic. Interior girders in the final structure will be exterior girders in a part width situation and shall be designed accordingly.

Use refined methods when the skew angle exceeds 30 degrees, the span length of any one span is greater than 150 feet or the radius of the beam/girder is less than 2000 feet (degree of curvature, “D”, is greater than three degrees (3°)).

Constructability Reviews shall be done on all projects especially those with part width construction and curved steel girders. See Chapter 2.

Refined methods include finite element method, finite strip method, finite difference method, analytical solution to differential equations, and slope deflection method.
Accelerated Bridge Construction (ABC) (6-17-2013)

A. Background and Process

Accelerated Bridge Construction (ABC) techniques, including Prefabricated Bridge Elements & Systems (PBES) and Full Structural Placement Methods, are recognized by the Michigan Department of Transportation (MDOT) and the Federal Highway Administration (FHWA) as important and effective methods to construct or rehabilitate highway structures, while reducing the impact of bridge construction activities on mobility, the economy, and user delay.

ABC may include new technologies in the form of construction and erection techniques, innovative project management, high performance materials, and pre-fabricated structural elements to achieve the overall goals of shortening the duration of construction impacts to the public, encouraging innovation, ensuring quality construction, and expected serviceability of the completed structure.

All major rehabilitation or reconstruction bridge projects should be evaluated at the Scoping Process, see Chapter 6 of the Scoping Manual, to determine if ABC is suitable and provides a benefit; taking into consideration safety, construction cost, site conditions, life cycle cost of the structure, MDOT’s mobility policy and user delays, and economic impact to the community during construction.

All proposed ABC candidate projects are subject to Statewide Alignment Team Bridge (Bridge Committee) approval. Candidate projects during the scoping phases are to be presented at the monthly Bridge Committee meeting. The Bridge Committee will review candidate projects for further evaluation, and grant approval to pursue ABC techniques and determine availability of Bridge Emerging Technology funding. Once the Bridge Designer is assigned the project they shall determine if the ABC methodology is feasible from a design aspect. Issues shall be discussed with the Bridge Development Engineer, Bridge Field Services Engineer, and subsequently the Bridge Committee. A Scope Verification meeting may be necessary to resolve design and constructability issues (see Section 2.02.14 &. 15 of Bridge Design Manual).

If the determination has been made that ABC will be implemented on a specific project, the next step is to choose the methods that are technically and economically feasible.
7.01.19 (continued)

Accelerated Bridge Construction (ABC)

B. Prefabricated Bridge Elements & Systems (PBES)

2. Prefabricated Element Types

The following prefabricated elements may be considered for use on MDOT bridge projects:

a. Precast full depth deck panels.
 (1) Panels may be connected by reinforcement splice with closure pours using high strength concrete or ultra-high performance concrete or they may be transverse or longitudinally post tensioned.
 (2) Panels are sensitive to skew and beam camber and haunches.
 (3) Panels using post tensioning may have long term maintenance concerns.
 (4) Riding/wearing/sealing surface should be provided such as epoxy overlay or HMA overlay with waterproofing membrane.
 (5) Dimensional tolerances are very tight.
 (6) Additional geometry control will be required, and should be stated in the plans to be included in the Contractor Staking pay item.
 (7) Match casting may be used to assure proper fit-up when complex geometry is required.

b. Decked Beam elements. (12-17-2018)
 (1) Two steel beams connected with deck (modular beams).
 (2) Decked Bulb Tee beams.
 (3) Decked prestressed spread box beams.
 (4) These systems rely on full shear and moment capacity joints and closure pours.
 Ultra High Performance Concrete may be used to reduce the lap length of the connection detail.
 (5) Camber control may require pre-loading of erected modular units, or partial post tensioning until all dead load deflections are applied.
 (6) Casting the roadway cross slope and/or vertical alignment curvature on modular units may be difficult, consider variable thickness overlays to develop required geometry.
7.01.19 (continued)

Accelerated Bridge Construction (ABC)

B. Prefabricated Bridge Elements & Systems (PBES)

2. Prefabricated Element Types

The following prefabricated elements may be considered for use on MDOT bridge projects:

a. Precast full depth deck panels.

 (1) Panels may be connected by reinforcement splice with closure pours using high strength concrete or ultra-high performance concrete or they may be transverse or longitudinally post tensioned.

 (2) Panels are sensitive to skew and beam camber and haunches.

 (3) Panels using post tensioning may have long term maintenance concerns.

 (4) Riding/wearing/sealing surface should be provided such as epoxy overlay or HMA overlay with waterproofing membrane.

 (5) Dimensional tolerances are very tight.

 (6) Additional geometry control will be required, and should be stated in the plans to be included in the Contractor Staking pay item.

 (7) Match casting may be used to assure proper fit-up when complex geometry is required.

b. Decked Beam elements.

 (1) Two steel beams connected with deck (modular beams).

 (2) Decked bulb T beams.

 (3) Decked prestressed spread box beams.

 (4) Decked side-by-side box beams

 (5) These systems rely on full shear and moment capacity joints and closure pours.

 Ultra High Performance Concrete may be used to reduce the lap length of the connection detail.

 (6) Camber control may require pre-loading of erected modular units, or partial post tensioning until all dead load deflections are applied.

 (7) Casting the roadway cross slope and/or vertical alignment curvature on modular units may be difficult, consider variable thickness overlays to develop required geometry.
7.01.19 (continued)

Accelerated Bridge Construction

B. Prefabricated Bridge Elements & Systems (PBES)

c. Pier Elements.
 (1) Precast pier caps.
 (2) Precast columns.
 (3) Precast pile caps.
 (4) These systems rely on grouted or mechanical reinforcement splices to develop reinforcement sufficiently to transfer reactions from one element to the next.
 (5) Consider multiple smaller caps spanning two columns as opposed to one large cap.
 (6) Pier columns that directly support beams without pier caps may be considered.
 (7) Pier column voids can be considered to reduce weight. Weight of PBES elements should be limited to 40 tons where possible.

7.01.19 (continued)

d. Abutment and Wall Elements.
 (1) Precast abutment panels.
 (2) Precast footings.
 (3) Precast backwalls and wingwalls.
 (4) These systems rely on grouted or mechanical reinforcement splices to develop reinforcement sufficiently to transfer reactions from one element to the next.
 (5) Voids can be considered to reduce weight. Weight of PBES elements should be limited to 40 tons where possible.

e. Precast Approach Slabs

Dimensional tolerances are very tight for all Prefabricated Bridge Elements & Systems (PBES). The tolerance sensitivity required when erecting prefabricated elements may require dual or independent survey contracts to ensure proper fit up, camber, deflections and finished grades.
Accelerated Bridge Construction

C. Full Structural Placement Methods

The following full structural placement methods may be considered for use on MDOT bridge projects:

1. Self-Propelled Modular Transport (SPMT):
 a. Computer controlled platform vehicle with movement precision to within a fraction of an inch.
 b. Capable of lifting 165 to 3,600 tons.
 c. Vertical lift range of 36 to 60 inches.
 d. Axle units can be rigidly coupled longitudinally and laterally.
 e. Move costs can be up to $500,000 (mobilization costs are significant, so SPMTs should be considered on corridors where multiple bridges may be moved).
 f. Limited to use on sites with minimal grade changes.

2. Lateral Bridge Slide:
 a. Bridge section is built on temporary supports adjacent to existing substructure.
 b. Bridge section bears on stainless steel, or other low friction surface such as Teflon.
 c. Existing substructure units can be reused, or new units constructed with minimal impact to traffic. Consider converting multiple span bridges into single spans so that proposed substructure units can be constructed in different locations from existing without impacting the operation of the existing structure.
 d. Bridge section is laterally jacked, or rolled into place.
 e. Required jacking forces must overcome static and kinetic friction.
 f. Consideration shall be given for the need to push and pull the bridge to meet movement tolerances. The hydraulic ram or cable with rollers shall be sized to accommodate both movements.
 g. Cost to slide a bridge is approximately $50,000 to $100,000 depending upon size of the bridge, and the number of spans.
 h. Additional stiffeners may be required on beams at point of jacking force application.
 i. Additional reinforcement in concrete elements may be required to control jacking stresses.
 j. Grade raises can be accommodated by casting backwalls and abutment portions on the proposed superstructure, and sliding over proposed sawcut elevations on existing abutments.
 k. Deflections of temporary substructure units must be considered, and the connection from the temporary substructure units to the permanent substructure units must be sufficiently rigid as to allow minimal deflections at the transition.
7.01.19 (continued)

Accelerated Bridge Construction

C. Full Structural Placement Methods

3. Incremental (Longitudinal) Launching:
 a. Bridge section is built near approaches, and then longitudinally launched into place.

 b. Prestressing may be required for concrete elements due to alternating bending moments generated during launch.

 c. Launching trusses, gantries, and hydraulic systems may be considered.

Allowing the contractor to select methods of placement may also lead to additional innovations and acceleration to the project schedule. Depending on the complexity of the overall project, innovative contracting methods may also be used in conjunction with ABC/PBES techniques. Innovative contracting methods are approved on a project by project basis by the MDOT Innovative Contracting Committee, and the MDOT Engineering Operations Committee. For more information see the Innovative Construction Contracting Manual.

The Federal Highway Administration provides additional information about ABC and PBES at the following website: http://www.fhwa.dot.gov/bridge/abc/index.cfm.

7.01.20

Stream/River Crossing Low Chord Elevation for Navigation (9-24-2018)

Provide for navigation, where practical, a minimum clearance of 2 feet from the low chord to the design high water elevation. Clearance should conform to Federal requirements based on normally expected flows during the navigation season. Navigation includes using canoes, small boats and wading by fishermen.
MICHIGAN DESIGN MANUAL
BRIDGE DESIGN - CHAPTER 7: LRFD

7.02

SUPERSTRUCTURE

7.02.01

Structure Type (5-6-99)

Whenever possible, multispans steel structures shall be continuous to avoid having expansion joints over piers. Consideration shall also be given to integral or semi-integral structures. Suspended cantilever design shall be avoided. When simple spans of an existing bridge are being replaced, consideration should be given to replacement with continuous beams and continuous for live load superstructure.

Where supporting members are prestressed concrete beams, decks should be cast continuous over piers where possible. Consideration shall also be given to integral or semi-integral structures.

Beam designs with complex layout may require the contractor to provide provisions and design any falsework required to ensure proper erection of beams. (11-28-2011)

Include the special provision, Complex Steel Erection, Shoring and Falsework, when one of the following situations may occur during the erection of structural members:

A. Construction of continuous spans > 200’.

B. Girders with horizontal curvature.

C. Field assembled suspension, movable bridge, cable-stayed, truss, tied arch, or other non-typical spans.

(11-23-2015)

7.02.02

Beam Spacing (5-6-99) (11-28-2011)

Space all beams so that the center to center distance does not exceed 10'-0". If the spacing is exceeded the designer shall perform an analysis to ensure that the structure meets load rating criteria specified in MDOT Bridge Analysis Guide. Space spread box beams such that the center to center distance is not less than 6'-0". (8-20-2009)

7.02.03

Beam Material Selection

The following is a guide for beam or girder material selection:

1. Spread box beams, 36" wide, up to 42" deep, 5000-8000 psi concrete.

2. Spread box beams, 48" wide, up to 60" deep, 5000-8000 psi concrete.

3. I-beams (Types I thru IV, 28" to 54" deep), 5000-8000 psi concrete.

4. I-beams (Wisconsin type, 70" deep), 5000-8000 psi concrete. Use in Upper Peninsula.

5. I-beams (Michigan 1800 Girder, 70.9" deep), 5000-8000 psi concrete. Use in Lower Peninsula.

6. Bulb Tee Beams (36" to 72" deep, 49" and 61" top flange), 5000-8000psi concrete.

B. Steel (4-17-2017)

1. Rolled Beams, AASHTO M270 Grade 36, 50 or 50W.

2. Welded plate girders AASHTO M270 Grade 36, 50 or 50W.
7.02.03 (continued)

Beam Material Selection

C. New Structures

The choice of girder material is generally to be governed by the economics of design and expected span lengths. For structures over depressed freeways or other areas where there is a high concentration of salt spray or atmospheric corrosion, concrete is preferred.

D. Reconstruction of Existing Structures

The new portions are to be similar in appearance to the existing structure. Current materials and construction procedures are to be used with considerations given to matching the beam deflections of the existing structure. (5-6-99)

E. False Decking

False decking shall be erected prior to deck removal or repair on reconstruction projects and after beam erection on new or reconstruction projects. (12-5-2005)

7.02.04

Structural Steel Grades- Available Thickness (5-6-99)

A. AASHTO M270 Grade 36 up to 8” in thickness.

B. AASHTO M270 Grade 50 up to 4” in thickness.

C. AASHTO M270 Grade 50W (painted) steel up to 4” in thickness may be substituted for Grade 50 steel.

7.02.05

Bearings

A. Sole Plates

Plate thicknesses are to be specified in ¼” increments. For beveled sole plates, this ¼” increment is based on the maximum thickness.

For steel beams, sole plates are to be beveled when the calculated bevel is greater than 1% for curved steel bearings and greater than 0.5% for elastomeric bearings. For requirements for prestressed concrete beams, see Subsection 7.02.18. (8-6-92)

B. Elastomeric Pads

Elastomeric pads (⅛”) are required under all steel masonry plates and are to be 1½” longer and wider than the masonry plates. (10-24-2001)
7.02.05

Bearing (continued)

C. Elastomeric Bearings

Plain bearings shall have a shear modulus, G, of 200 (±30psi), laminated bearings shall have a shear modulus of 100 psi (±15psi). Pads shall be 4” minimum (generally 6”) by 34” with ¾” minimum thickness (increase in ¼” increments). Design steel-reinforced elastomeric bearings with AASHTO LRFD Method A. Method B shall not be used unless approved by MDOT Structural Fabrication Engineer. (11-28-2011) (3-26-2018)

Fabric laminated (cotton-duck or other fiber reinforcement) bearings shall not be used unless approved by MDOT Structural Fabrication Engineer or MDOT Bridge Design Supervising Engineer. (3-20-2017) (3-26-2018)

Additional information (polymer type, minimum low-temperature grade, etc.) can be found at MDOT’s Elastomeric Bearing Guidance Document. (3-20-2017)

D. Anchor Bolts

Calculated lengths of bridge anchor bolts should be based on a bolt projection of 1” beyond the nut. (5-6-99)

7.02.06

Precamber - Steel Beams

Where dead load deflection, vertical curve offset, and deflection due to field welding (rare occurrence) is greater than ¼”, the beams shall have a compensating camber. Camber is to be figured to the nearest ¼” and shall be parabolic.

In certain instances, such as for continuous spans or long cantilevers, reverse camber should be called for in order to obtain uniform haunch depths.

When several beams in a bridge have corresponding camber ordinates which differ only slightly from each other, the Engineer should attempt to average these into one set for all beams.

7.02.07

Moment of Inertia - Composite Beam

The composite moment of inertia shall be used throughout positive moment regions. This moment of inertia is to be used in negative moment regions to compute beam stiffness only.

7.02.08

Multiple Span Design

A. Beam Depth

Use the same depth beams for all spans with the longest span controlling the beam depth.

B. Composite Design

Composite design shall be used on all spans. Composite design uses the entire deck/slab thickness versus deck/slab stand-alone design which eliminates the top 1 ½” wearing surface. (5-6-99) (8-17-2015)

C. Suspended Span

The suspended span should be poured first (see Section 7.02.01).
7.02.09

Rollered Beam Design (8-20-2009)

Cover plates for rolled beams are to be designed according to the following information and current AASHTO LRFD Bridge Design Specification A 6.10.9:

A. The cover plate width for a new beam should be equal to the beam flange width minus 1½” and for an existing beam should be equal to the beam flange width plus 1½”.

B. The minimum cover plate thickness shall be the greater of ⅜” or 1/24 of the plate width.

C. Cover plate steel should be the same as the beam steel or matched as closely as possible.

7.02.10

Plate Girder Design (Welded)

A. Web Plates

Web plate depths shall be in 2” increments and the thickness shall be a minimum of 7/16”. (9-2-2003)

B. Flange Plates

Flange plate widths may be varied to achieve a more economical design when required. The minimum width shall be 12”. The minimum thickness shall be ½” when shear connectors are not used and ¾” when shear connectors are welded to the flange in the field.

C. Hybrid Designs

Hybrid designs using a combination of quenched and tempered steel according to ASTM A 514 (AASHTO M 244) & A 852 (AASHTO M 313) shall not be used. (5-6-99)

7.02.11

Stiffeners

A. Orientation and Size

Stiffeners are to be set normal to the web; however, when the angle of crossing is between 70° and 90°, the stiffeners may be skewed so that the diaphragms or crossframes may be connected directly to the stiffeners. Minimum thickness shall be 7/16”. (9-2-2003)

B. Bearing Stiffeners

In general, bearing stiffeners should be eliminated at abutments with a dependent backwall, and the lower portion of the backwall should be poured and allowed to set before the deck is cast.

C. Bearing Stiffeners at Temporary Supports

To prevent the possibility of web buckling, bearing stiffeners should be provided at temporary supports for all plate girders. They need be placed on one side only; and on the fascia girders, they are to be placed on the inside.

D. Bearing Stiffeners for Rolled Beams

Even though bearing stiffeners are not required by design, if a beam end is under a superstructure transverse joint, two ½” x 4” bearing stiffeners should be provided as a safety factor in the event of corrosion and section loss of the web. (8-6-92)
7.02.12

Welding

All welding details are to be according to AWS specifications, except for minimum fillet weld sizes, which should be as shown in the Standard Specifications. Any intended deviations are to be called to the attention of the Design Supervising Engineer. (5-6-99)

Plans should show welding details but should not show the size unless a deviation from AWS specifications is intended.

Plans should also show beam or girder flange tension and stress reversal zones where lifting lugs will not be permitted.

7.02.13

Field Splices in Plate Girders

A. General

<table>
<thead>
<tr>
<th>Girder Length</th>
<th>Field Splice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' to 125'</td>
<td>None provided.</td>
</tr>
<tr>
<td>Over 125' to 160'</td>
<td>Field splice is shown on plans as optional; it is designed and detailed, but not paid for.</td>
</tr>
<tr>
<td>Over 160'</td>
<td>Field splice is designed, detailed, and paid for. *</td>
</tr>
</tbody>
</table>

Fabricators that wish to field splice other than as called for on the plans will need prior Design approval.

* Additional steel weight from splices will be added to quantity for "Structural Steel, Plate, Furn and Fab". (12-22-2011)

7.02.14

Diaphragms and Crossframes

A. Orientation (8-20-2009)

Diaphragms or cross-frames shall be provided at abutments, piers and hinge joints. Intermediate diaphragms may be used between beams in curved systems or where necessary to provide torsional resistance and support the deck at points of discontinuity or at angle in girders.

The need for diaphragms or cross-frames shall be investigated for all stages of assumed construction procedures and the final condition. Diaphragms or cross-frames required for conditions other than the final condition may be specified to be temporary bracing.

B. End Diaphragms

End diaphragms or crossframes are required at ends of beams to support the end of slab unless it is supported by other means. Curved girders shall have diaphragms or crossframes placed at the centerline of support. To provide access for painting, these diaphragms or crossframes shall be no closer than 2'-0" from the beam end at independent backwalls and shall have no less than 2'-0" of clearance at simple supports. (5-6-99)
Shear Developers

Shear developers shall be used in all steel beam spans. When replacing a deck, the existing shear developers shall be removed and not salvaged. (5-6-99)

A. Type Used

Shear developers shall be the stud type shown in Bridge Design Guide 8.07.01. Details and spacing for ¾” studs shall be shown on the plans. Generally shear developers are 8” or less in length. Provide additional longitudinal reinforcement when haunch becomes greater than 6” and longer than 8” shear developers are required. (5-6-99) (12-19-2016)

B. Spacing

1. Standard Bridge Slabs

The spacing is to be constant along the beam as required by the design. Shear developers are not to be used in areas of negative moment. They should extend through the positive moment area and to, or slightly beyond, the point of contraflexure. This point should be determined for the loading condition that will place it closest to the support over which negative moment will occur. In the event of a special case in which shear developers are used in negative moment areas, maximum tensile stress at the point of attachment is not to exceed that which is allowed by the current AWS specifications.

Shear developers (acting as slab ties) shall be placed in at least one half of all spans regardless of contraflexure points and moment orientations. In end spans with all negative moments place shear developers from abutment towards pier at 24” spacing. In interior spans with all negative moments place shear developers in middle half of span at 24” spacing. (12-5-2005)

For empirical bridge slabs, the studs shall be placed on the entire length of beams. This includes the negative moment regions. The design of the studs shall be based on the positive moment area as critical. (5-6-99)

A minimum of two shear connectors at 24” shall be provided in the negative moment regions of continuous steel superstructure (A 9.7.2.4 AASHTO LRFD). Where composite girders are noncomposite for negative flexure, additional shear connectors shall be provided in the region of points of permanent load contraflexure. The additional shear connectors shall be placed within a distance equal to one-third of the effective slab width on each side of the point of permanent load contraflexure. Field splices should be placed so that they do not interfere with the shear connectors.

Lifting Lugs

The contractor will be permitted to use lifting lugs to transport and erect beams, subject to the requirements of the Standard Specifications. Our plans should indicate the tension zones where lifting lugs will not be permitted.

Painting

Structural steel will be painted light gray. AMS-STD-595 color #16440.

The Roadside Development Unit may request color # 15488 or another variety from AMS-STD-595 and obtain Region/TSC concurrence. The Bridge Design Unit Leader will then indicate the color number on the plan notes. See Section 12.07.06 for information regarding performance warranties. (5-1-2000) (11-28-2011) (10-23-2017) (12-26-2017)
7.02.18

Prestressed Concrete Design

A. General

1. Strand Selection

The design and detail sheets shall specify only ASTM A416 (AASHTO M 203) Grade 270 low relaxation strands. Strands shall be 0.6 inches in diameter with a release force of 44,000 pounds. (5-6-99)

2. Bond Breakers/Debonding (5-1-2000)

Draped strands shall be avoided where possible. Debonding is MDOT’s preferred method of controlling stresses at the end of prestressed I beams. Strands should be debonded in pairs. A maximum of 40% of the strands may be debonded. Amounts more than that require draped strands. The debonding should be staggered by placing the debonded strands into groups similar to the table below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Debonded</th>
<th>Shortest</th>
<th>2nd</th>
<th>3rd</th>
<th>Longest</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The shortest point refers to the closest point to the beam end that any debonding can be terminated without overstressing the beam. The longest point refers to the point that all debonding can be terminated. The above table was developed from the MDOT bridge program. Consultant debonding schemes shall follow a similar rational method.

From the end of the debonding to the point where the strands are no longer required to control stresses or provide ultimate capacity, a double development length (minimum) of bonding shall be provided (AASHTO 9.28.3).

Spans less than 30'-0” need not be debonded. It is realized that the continuity moments of continuous for live load structures may reduce the effectiveness of debonding & increase the number of draped strands. Wherever possible debonding shall not be placed on peripheral strands. If placing strands in the bottom row, they should be placed on every third strand with the corner strands being bonded.

3. To aid in stabilizing transverse reinforcement in the beam, a bar or strand shall be located in the bottom corners of the beam. Second row up for box beams and certain PCI beams. (8-20-2009)

4. Draping of strands shall be the last option to reduce stresses at the end of beams. Location of draped strands at beam ends shall start 2” from the top of the beam downward. Draped strands at beam end shall correspond to the highest available strands at beam center. (8-20-2009)

5. PCI beams under open joints are susceptible to corrosion from brine intrusion into the strands and mild reinforcement. This is the most prevalent distress to PCI beams. This can be mitigated by sealing the beam ends with an elastomeric sealer as described in Section 7.03.11A.

Prestressed I beams and spread box beams under expansion joints should be coated per the special provision for Concrete Surface Sealers. Apply the coating from the beam end a length the greater of twice the beam depth, or five feet. In addition, where the coating operation will have a minimal effect on the maintaining traffic schedule, and the cost of the project, the entire outside face of the fascia beam and its bottom flange, should be coated. On new construction or superstructure replacement the fascia beam can be coated prior to erection. (12-17-2018)

6. Continuous for live load prestressed concrete beams shall be designed as simple span beams for all positive dead load and live load moments. (9-2-2003)
7.02.18 (continued)

Prestressed Concrete Design

B. Prestressed Concrete Box Beam Design

1. Skew Bridges

The ends of the box beams shall be skewed to be parallel to the reference line.

2. Spacing (12-17-2018)

Spread box beams may be used and shall be treated similar to prestressed concrete I-beams. Space spread box beams such that the center to center distance is not less than 6'-0". The slab shall be according to Bridge Design Guide 6.41.01. (8-20-2009)

3. Bridge Seats (5-6-99) (12-17-2018)

For spread box beams the bridge seat shall be bolstered and level.

4. Bearings

Where the pressure is less than 100 psi, ½” joint filler may be used for a bearing pad. Where bearing pressures are greater than 100 psi, 4” minimum (generally 6") by 33" elastomeric pads shall be used (¾" minimum thickness, increase in ¼" increments). Cast steel sole plate (3/4" generally) in all beams. When the calculated bevel exceeds 1%, tilt sole plate as required. All position dowels for doweling beam to the substructure will be placed by drilling as described in the Standard Specifications. (8-20-2009) (11-28-2011) (11-24-2014)

5. Deck Slab/Wearing Course (12-17-2018)

a. MDOT Projects

Spread box beams shall use a slab according to Bridge Design Guide 6.41.01.

b. Local Agency Projects (8-20-2009)

A 6” thick reinforced concrete slab is to be used in all cases on local agency projects as described above except a hot mix asphalt, HMA, wearing surface may be used for side by side, prestressed concrete box beam bridges where the average daily traffic, ADT, is less than 500 vehicles and where the commercial traffic is less than 3% of the ADT. HMA (typically 2-3”) shall be placed after placement of preformed waterproofing membrane as per Standard Specifications section 710.03.

6. Beam steel reinforcement, including stirrups, shall be Grade 60 (ksi) for all box beams except 17” & 21” box beams. For 17” & 21” box beams the design of transverse beam steel reinforcement, stirrups and slab ties (ED & D bars) is based on Grade 40 (ksi); the use of either Grade 40 or Grade 60 is allowed in construction of the beam. Longitudinal beam steel reinforcement (A bars) shall be Grade 60 for 17” & 21” box beams. See note 8.07.04 Z. (11-24-2014)
7.02.18 (continued)

Prestressed Concrete Design

B. Prestressed Concrete Box Beam Design

1. Skew Bridges

The ends of the box beams shall be skewed to be parallel to the reference line.

2. Spacing

The spacing of side by side prestressed concrete box beams is to be the nominal width of the beam plus 1½”.

Spread box beams may be used and shall be treated similar to prestressed concrete I-beams. Space spread box beams such that the center to center distance is not less than 6'-0". The slab shall be according to Bridge Design Guide 6.41.01. (8-20-2009)

3. Bridge Seats (5-6-99)

The bridge seats of substructures shall be made parallel to the crown slopes of the roadway. For spread box beams the bridge seat shall be bolstered and level.

4. Bearings

Where the pressure is less than 100 psi, ½” joint filler may be used for a bearing pad. Where bearing pressures are greater than 100 psi, 4” minimum (generally 6”) by 33” elastomeric pads shall be used (¾” minimum thickness, increase in ¼” increments). Cast steel sole plate (3/4” generally) in all beams. When the calculated bevel exceeds 1%, tilt sole plate as required. All position dowels for doweling beam to the substructure will be placed by drilling as described in the Standard Specifications. (8-20-2009) (11-28-2011) (11-24-2014)

5. Transverse Post-tensioning

Box beams which are less than 33” deep will have transverse post-tensioning tendons placed at mid-depth. Beams which are 33” deep or deeper will have transverse tendons installed in pairs with a tendon placed at each third point of the beam depth. The transverse tendons will be spaced longitudinally as shown on Bridge Design Guide 6.65.13. (8-20-2009)

6. Wearing Course

a. MDOT Projects

The surfacing over a side by side box beam deck shall be a 6” thick reinforced concrete slab as shown in Bridge Design Guide 6.29.06A. Stirrups shall project from the beams into the slab to provide a composite section. (5-6-99)

b. Local Agency Projects (8-20-2009)

A 6” thick reinforced concrete slab is to be used in all cases on local agency projects as described above except a hot mix asphalt, HMA, wearing surface may be used for side by side, pre-stressed concrete box beam bridges where the average daily traffic, ADT, is less than 500 vehicles and where the commercial traffic is less than 3% of the ADT. HMA (typically 2-3”) shall be placed after placement of preformed waterproofing membrane as per Standard Specifications section 710.03.

Spread box beams shall use a slab according to Bridge Design Guide 6.41.01.

7. Beam steel reinforcement, including stirrups, shall be Grade 60 (ksi) for all box beams except 17” & 21” box beams. For 17” & 21” box beams the design of transverse beam steel reinforcement, stirrups and slab ties (ED & D bars) is based on Grade 40 (ksi); the use of either Grade 40 or Grade 60 is allowed in construction of the beam. Longitudinal beam steel reinforcement (A bars) shall be Grade 60 for 17” & 21” box beams. See note 8.07.04 Z. (11-24-2014)
Prestressed Concrete Design

C. Prestressed Concrete I-Beam Design

1. Bearing Pads

For single-span structures 40'-0" or less in length, use dependant backwalls with 1" elastomeric pads under the beams and joint filler under the backwall.

For single- and multiple-span structures with spans over 40'-0", allowance for expansion is required in designing the bearing pads.

2. Sole Plates

Sole plates (3/4" generally) are to be cast in all beams and shall be tilted as required when the calculated bevel exceeds 1%. (11-24-2014)

3. Skew Bridges

On skewed structures, the ends of the I-beams shall be made square regardless of the angle of skew. The top corners may be blocked out in order to accommodate a straight expansion joint across the structure.

4. Concrete Diaphragms

End diaphragms are to be set back 10" to 12" from the end of beam in order to permit the removal of the forms after the diaphragms are poured.

The bottoms of all diaphragms are to bear on the bottom of the lower beam fillet.

All diaphragms are to be cast separately from slab except with continuous for live load structures (optional construction joint). (5-6-99)

5. Steel Diaphragms

Steel intermediate diaphragms and steel end diaphragms at independent backwalls with a sliding slab are preferred over concrete diaphragms due to shorter construction duration. (8-27-2018)

Use details from Bridge Design Guide 6.60.12 A. - H. and include Special Provision in proposal. (11-26-2012)
7.02.19

Slabs

For information on Ride Quality on new slabs see section 7.02.32

A. Design (8-20-2009)

MDOT standard LRFD slab is designed using the following criteria:

1. The design loads for decks and deck systems should be specified depending on the method of analysis. When the approximate strip method is used, force effects should be determined on the following basis:

 a. Where primary strips are transverse and their span does not exceed 15.0 ft., the transverse strip shall be designed for the wheels of the 32.0-kip axle.

 b. Where primary strips are transverse and their span exceeds 15.0 ft., the transverse strip shall be designed for the wheels of the 32.0-kip axle and the lane load together.

 c. Where primary strips are longitudinal, the transverse strips shall be designed for all loads specified above, including the lane load.

2. The design truck shall be positioned transversally such that the center of any wheel load is not closer than:

 a. One foot (1.0 ft.) from the face of the curb or railing for the design of the deck overhang.

 b. Two Feet (2.0 ft.) from the edge of the design lane for the design of all other components.

3. Where the strip method is used, the extreme positive moment in any deck panel between girders shall be taken to apply to all positive moment regions. The extreme negative moment over any girder shall be taken to apply to all negative moment regions.

4. For deck/slab design only, the top 1½” of slab is considered a wearing surface and is not included in the design depth, but is included in the dead load. See section 7.02.08 B. for composite action of deck slabs. (8-17-2015)

Design of deck slabs using the Empirical Design Method according to A 9.7.2 AASHTO LRFD is an approved or allowed alternative.

B. Overhang

Design overhang according to A 9.7.1.5 AASHTO LRFD. If the deck overhang with cantilever does not exceed 6.0 ft. from the centerline of the exterior girder to the face of a structurally continuous concrete railing, the outside row of wheel loads may be replaced with a uniformly distributed line load of 1.0 klf intensity, located 1.0 ft. from the face of the railing. (8-20-2009)

For standard overhang, see various guides in Bridge Design Guides 6.29 Series. (1-14-2013)

Overhangs greater than standard should be avoided, if possible. If not, the slab design shall be checked in this region for negative movement.
7.02.19 (continued)

Slabs

C. Slab Haunches

Plans are to provide for the deck slab to be haunched at each beam to provide for variance in actual top of beams. The design should normally make allowance for a 1" uniform haunch for steel beam bridges and a 2" minimum haunch for prestressed concrete beam bridges; however, the details should show the haunch as variable. A nominal 2" haunch should be used on structures with span lengths exceeding 100'-0". To aid in the construction of the haunched slab, the plans should include bottom of slab elevations over each beam and at equal intervals across the spans. These elevations should apply at the time that all structural steel has been erected, but no other loads applied; however, they should include allowance for additional deflection due to forms, steel reinforcement, deck concrete, and railing. For additional criteria when the haunch exceeds 6" see section 7.02.20 G. and Bridge Design Guide 6.42.03A. (5-6-99) (4-23-2012)

D. Slab Thicknesses

Slab thicknesses are to be according to Bridge Design Guide 6.41.01 and are to be uniform thickness with beams stepped to follow the crown of the roadway.

E. Slab Under Sidewalk

If the roadway slab extends underneath the sidewalk, it should be designed for full highway loading.

F. Nighttime Casting of Superstructure Concrete

All bridge deck pours are to be designated nighttime casting of superstructure concrete on all bridge decks. (5-6-99)

7.02.19 (continued)

G. Bridge Crown/Slope

Use 2% cross-slope on all projects with a deck replacement or greater scope except those that have compelling reasons to meet the existing cross-slope. Maintain constant slope across lanes of travel and shoulders, including bridges with full superelevation and ramp bridges. This will allow for ease of construction and deck screeding.

Bridge overlays and railroad and bridge approach projects may use 1.5%. Local roads over may also use 1.5% unless the road approaches are or may become 2%.

Parabolic crowns being overlayed should be corrected to a minimum of 1.5%; otherwise a design exception or variance must be submitted. Deck replacement bridges with parabolic crowns shall be corrected to a 2% cross-slope. See Chapter 12 for criteria and procedure. (12-5-2005) (11-28-2011) (2-21-2017)

The road approach shoulder slope shall be transitioned to meet the bridge shoulder slope. The transition shall be based on superelevation transition slope (Δ%) from Standard Plan R-107 Series. The procedure is outlined in section 6.05.05 of the Road Design Manual. (8-20-2009) (11-28-2011)

H. Superelevation Using a Straight Line Friction Ratio

Standard Plan R-107-Series shall be used to incorporate superelevations on structures. When Standard Plan R-107-Series cannot be used, the straight line method on overlay projects and on a very limited basis for deck replacements can be considered. The straight line method allows for a lesser superelevation and thus decreases the HMA wedging on the high side of a bridge overlay. It also reduces the haunch depth on deck replacements. See Bridge Design Guide 6.11.02 for straight line chart. (12-5-2005)
7.02.20

Slab Reinforcement

For general steel reinforcement information applying to both superstructure and substructures, see Steel Reinforcement (Section 7.04).

A. Negative Moment Reinforcement

(12-5-2005) (12-17-2012)

Where additional longitudinal reinforcement is required in regions of negative moment see AASHTO LRFD A 6.10.1.7. If the longitudinal reinforcement is considered to be a part of the composite section, shear connectors shall be provided in negative flexure regions. Where shear connectors are used in negative flexure regions, the longitudinal reinforcement shall be extended into positive flexure region (AASHTO LRFD A 5.11.1.2.3). (8-20-2009) (12-22-2011)

Bar ends should have two 3’ staggers (see below) to minimize transverse cracking at bar terminations.

![Diagram showing bar placement](image)

With continuous beam design, the bar length should be according to AASHTO LRFD 5.11.1.2.3.

Negative moment reinforcement on 6” decks shall be limited to #6 maximum bar size. The #3 bar longitudinal reinforcement shall be considered in available area for negative moment slab reinforcement. If needed the #3 longitudinal reinforcement in the negative moment region can be replaced with larger bars and combined with added negative moment reinforcement. (11-28-2011)

7.02.20 A. (continued)

B. Bar Spacing (8-20-2009)

See AASHTO LRFD 5.14.4 and 9.7 and Bridge Design Guide 6.41.01.

C. Bar Laps

See Bridge Design Guide 7.14.02A.

Transverse slab reinforcement, if possible, is to be lapped as follows: top steel between the beams and bottom steel over the beams.

D. Cover

All decks will provide 3" of clear concrete cover to the top of transverse reinforcement. See Bridge Design Guide 6.41.01. (5-6-99)

E. Placing of Transverse Bars

Transverse bars are generally placed perpendicular to the beams; however, where the angle of crossing is 70º or greater, transverse bars may be placed parallel to the reference lines if "S along the skew” falls in the same beam spacing range as "S normal to the beams” or the next larger range (see Bridge Design Guide 6.41.01).

Dimensioning is to be perpendicular to reference lines when the transverse bars are laid parallel to the reference line.

F. Epoxy-Coated Reinforcement

All bars in the superstructure are to be epoxy coated.
7.02.20 (continued)

Slab Reinforcement

G. Additional Reinforcement When Haunch Exceeds 6 Inches

Additional transverse and longitudinal reinforcement shall be required when haunch depths exceed 6”. Space additional transverse haunch reinforcement (EW05 or EK05 bars) between transverse bars, and ensure bars sufficiently penetrate haunch and slab. See Bridge Design Guide 6.42.03A for details. (4-23-2012)

7.02.21

Continuous Beam Design - Steel

A. Pour Sequence

Where temporary supports are not provided under continuous beams, a pour sequence is to be given to ensure that deflections occur as assumed in the design.

B. Preloading

In order to prevent flexural cracking of deck slabs of composite, continuous-span bridge structures, where shoring is not practical; it is suggested that preloading be considered and that the concrete pouring sequence be carefully designated. Generally, the positive dead load moment areas in the tail spans should be poured first with a preload in place in the center span. For simplicity, the weight of the preload may be chosen equal to that of the concrete deck to be poured in the center span. Removing the preload prior to placing the center span concrete would induce compressive stresses in the concrete in the tail spans that would offset the tensile stresses induced when the middle span concrete is placed.
7.02.22

Screeding

A. Transverse Screeding

Transverse screeding shall be used for finishing all bridge decks.

When the skew angle is greater than or equal to 45°, the strike equipment is placed parallel to the reference lines.

B. Screed Elevations

In computing screed elevations, the specified camber should be used.

The following dead loads should be used in computing beam deflection for screed elevations:

- 10 LBS/SFT for formwork
- 10 LBS/SFT for reinforcing steel
- 145 LBS/SFT for plain concrete
- 150 LBS/SFT for reinforced concrete

Screed elevations for suspended spans are to be figured for the case of no deck concrete having been poured in any span.

Screed elevations for prestressed concrete beams are to account for long term effects by modifying the beam deflections using the following factors:

Factor applied to prestressing force at release = 1.9+0.6(\(I_{\text{Girder}} / I_{\text{Composite}}\))

Factor applied to beam self-weight at release = 2.1+0.7(\(I_{\text{Girder}} / I_{\text{Composite}}\))

Factor applied to slab when poured (including SIP forms, diaphragms and utility loads) = 1.0+1.1(\(I_{\text{Girder}} / I_{\text{Composite}}\))

Factor applied to barrier and sidewalk when poured = 2.3

\(I_{\text{Girder}}\) = moment of inertia of girder
\(I_{\text{Composite}}\) = moment of inertia of composite section

7.02.23

Stay-In-Place Forms

A. Use (9-2-2003)

Because of the design accommodations, any need for stay-in-place forms should be anticipated in the Contract Plans and Specifications.

The criteria for the use of metal stay-in-place forms are safety and economy in construction. Where practical, they should be included as a contractor option.

The use of concrete stay-in-place forms is not allowed.

B. Design (5-6-99) (9-21-2015)

The design of metal stay-in-place forms is the responsibility of the contractor. If the beams on a deck replacement project can’t accommodate an increased dead load of 15 LBS/SFT (7.01.04 I) then note 8.07.01 R shall be used on the plans. Because of the load and deflection limits of the forms, it may be necessary to reduce the beam spacing resulting in the use of one or more additional rows of beams. This additional cost should be justified by the improved safety and/or in the cost reduction of maintaining traffic on the roadway below.

When the use of stay-in-place forms cannot be economically justified the designer shall prohibit their use by including note 8.07.01 S. on the plans. (9-2-2003)

Detail steel beam tension zones on plans. Welding or mechanically fastening permanent metal deck forms or accessories to structural steel is prohibited. (6-16-2014) (3-26-2018)
7.02.24

Joints in Deck Slabs

A. Longitudinal Joints

Deck widths greater than 100'-0" require a longitudinal open/expansion joint. (5-6-99)

1. Centerline (Median) Joint

For bridges requiring a longitudinal open joint, which are also on roadways having a median barrier, the barrier is to be split, with the open joint extending up between the two halves.

2. Valley Gutter Joint

To facilitate the construction of bridges with valley gutters, we will show an optional longitudinal construction joint 2'-0" inside or outside the gutter centerline (depending on beam placement), and the reinforcing steel will be detailed with a splice at the gutter centerline.

3. Construction Joints

An optional longitudinal construction joint is to be shown on the plans when the bridge width exceeds 75'-0". For skews greater than or equal to 45°, this 75'-0" is measured parallel to the reference lines. This optional joint is to be placed at the edge of a pavement lane, regardless of location of the crown of the road.

Longitudinal construction joints are not to be placed over the flange of a beam.

4. Part-Width Construction

Where possible, longitudinal construction joints used to facilitate part-width construction should be placed at the edge of a pavement lane. This greatly improves ride quality and aesthetics. (5-1-2000)
Joints in Deck Slabs

B. Transverse Joints

1. Construction Joints

At construction joints where movement is anticipated, an expansion joint device shall be used. Construction joints over piers at fixed bearings are to be a sawed joint 1½" deep by ⅛" wide (minimum) in the top of slab. The joint is to be sawed within 24 hours of placing the curing and is to be filled to ¼" below top of concrete with polyurethane or polyurethane hybrid sealant included in the bid item “Superstructure Concrete, Form, Finish, and Cure, Night Casting.” (10-24-2001)(11-28-2011) (7-18-2016)

2. Expansion Joints

The maximum single opening in an expansion joint device shall be no more than 4", measured in the direction of traffic. When movement required is greater than 4" a modular expansion joint shall be used. (5-6-99)

Expansion joint devices shall be installed ¼" to ¾" below the adjacent deck elevation. This fact shall be taken into account during design. This recess is to prevent damage to the joint from snow plows. (5-6-99) (2-16-2015)

The EJ3 Sheet included with the plans will designate the total travel that is required at each joint, measured along the centerline of bridge, and the angle of crossing rounded off to the nearest 10°. The length of the device required at each location will be shown, and these lengths totaled for one bid item, "Expansion Joint Device." The fact that the one item includes several minimum travel requirements should not affect the bid price since we currently find little or no difference when we list minimum travels separately. The EJ4 Sheet shall be used with replacement of existing neoprene expansion joint devices. Use of EJ4 Sheet (device) requires Form 0304 (Proprietary Item Certification (PIC) and Public Interest Finding (PIF)) be filled out and placed in the project file for Delcrete Elastomeric Concrete (D.S. Brown, 300 East Cherry Street, North Baltimore, OH 45872, Telephone: 419.257.3561). Delcrete is a PIC with "No Equally Suitable Alternative". See section 15.04 and section 11.08 of the Road Design Manual. (8-20-2009) (2-16-2015)

After contract award and before placing the order, the contractor shall inform the Engineer which devices and models they intend to install. The Engineer will provide standard shop drawings of the joint device. (2-16-2015)

When an expansion joint device is used on a sidewalk it shall be fitted with a cover plate as described and detailed in Section 7.02.27 and EJ3 and EJ4 Sheets. (8-20-2009)
7.02.25

Pavement Seats

Pavement seats are to be provided on all bridges except integral and semi-integral structures with continuous pour over reference lines (also see Section 7.03.01 C). (5-6-99)

7.02.26

Drain Castings

A. Location

Drain castings in bridge decks should be avoided where practicable. Where drain castings are necessary, they are to be spaced as required but located so as not to allow water to fall on slopes and/or roadways below. Design is to be based on Hydraulic Engineering Circular No. 21 (HEC 21), “Design of Bridge Deck Drainage”, or an equal. (5-6-99)

B. Special Reinforcement Steel

Where drain castings are called for in bridge decks, plans are to show that two epoxy coated reinforcing bars are to be placed diagonally at each corner of the drain casting (one top, one bottom). (5-6-99)

7.02.27

Sidewalks (9-2-2003)

In general, on a bridge where pedestrians must be accommodated and where maximum posted speed is 40 mph or less, a raised sidewalk should be provided if there is a raised sidewalk on the approach. Where posted speed is greater than 40 mph or there is no raised sidewalk on the approach, a walkway at roadway level should be provided and protected from traffic by an impact proven railing.

Where sidewalks are required, they should be 5'-2" or greater in width. However, in circumstances where a 5'-2" width is not achievable a 4'-2" minimum width is permissible if crash tests allow. (8-20-2009)

7.02.27 (continued)

When the bridge railing length is greater than 200 feet, to adhere to Americans with Disabilities Act (ADA), the sidewalk must be 5'-0" wide (@ 2% slope) or a 5’ square passing space shall be located at intervals not exceeding 200 feet. The requirement is valid with a raised sidewalk as on Standard Plan B-25-Series and B-26-Series and anywhere where the sidewalk is located behind a railing that separates pedestrians from traffic. For railing lengths less than 200 feet the sidewalk width may be 4’-2” if crash tests allow and does not require passing spaces. (8-20-2009)

Expansion joints located on sidewalks shall be fitted with cover plates to eliminate vertical depressions caused by the joint. See Expansion Joint sheets (EJ3 or EJ4). (8-20-2009)

For additional information refer to Bridge Design Guides 6.05.02, 6.29.10C, 6.29.17E and Road Design Manual Section 6.08.

A. Sidewalk Joints

Space sidewalk joints to match any joints in the slab. (9-25-2017)

B. Independent Sidewalk

If the sidewalk is independent of the roadway slab, the sidewalk is to be designed for maximum wheel loading for the bridge with overstressing as allowed by the current AASHTO Standard Specifications for Highway Bridges.
Where bridge railing is to be installed, and there are no sidewalks or the sidewalk is behind the railing, the railing shall be of a type that has passed full scale impact (crash) tests. The only types of impact proven railings currently used by MDOT are the Type 4 Barrier (see Standard Plan B-17-Series), Type 5 Barrier (see Standard Plan B-20-Series), the 2 Tube railing (see Standard Plan B-21-Series), 4 Tube railing (see Standard Plan B-26-series) and Aesthetic Parapet Tube railing (see Standard Plan B-25-Series).

Where bridge railing is to be installed on raised sidewalks it must be 4 Tube railing (see Standard Plan B-26-series) or Aesthetic Parapet Tube railing (see Standard Plan B-25-Series).

A. Railing Types and Their Use (9-2-2003)

Generally, Bridge Barrier Railing, Type 4, is used on all new structures and major rehabilitation bridge projects without sidewalks (see Standard Plan B-17-Series). On structures where sight distance is a problem, Type 5 may be substituted (see Standard Plan B-20-Series). At stream crossings or scenic areas, Bridge Railing, 2 Tube, Aesthetic Parapet Tube or 4 Tube may be used (see Standard Plan B-21-Series, B-25-series or B-26-Series). On bridges where pedestrian or bicycle traffic is separated from vehicular traffic by a standard barrier, it is not necessary to provide a vehicular railing at the fascias. In such cases pedestrian fencing is desirable.

For structures without sidewalks, but where some pedestrian traffic is likely, a Bridge Railing, 4 Tube or Aesthetic Parapet Tube is to be used.

B. Railing Finishes

A rubbed surface finish is required for concrete railings on all bridges with sidewalks and left turn bridges in urban areas.

Note 8.07.01E is to be included in the plans of all projects where a rubbed finish is required. It is to be placed on the same sheet and directly under the note making reference to the railing standard being used.

C. Joints

To avoid cracking, an open joint is required in concrete railings at all deck joints where reinforcing steel is not continued through the joint. False joints are not required in barrier railing.

A 1" joint shall be used in all concrete railings over the piers of continuous decks, at midspan on all structures with a span greater than 100'-0" and cantilever decks where the cantilever is more than 10'-0" long. The joint shall be perpendicular to the centerline even on skewed bridges. A 1" joint filler shall be used to fill the joint to ½" from the bevels of the railing. The remaining ½" shall be sealed with a polyurethane or polyurethane hybrid sealant. (5-1-2000) (2-21-2017)
7.02.28 (continued)

Railing

D. Median Barrier vs. Bridge Barrier Railing (5-6-99)

Criteria for use:

1. Concrete barrier on a bridge shall be reinforced and attached to the structure.

2. Barriers that function as railings shall be at least 3'-6" in height.

3. Barriers that function as median barriers shall be at least 2'-8" in height.

4. Concrete glare screens required on approaches shall be continued across structures.

5. When structures are 150'-0" or less apart (along traveled roadway) a concrete barrier (Concrete Barrier, Single Face or approved alternate) should be used between the two structures, in lieu of guardrail to provide continuity. Approval by the agency having jurisdiction of the approaches is required.

7.02.29

Fencing

A. MDOT's Policy

For protective screening MDOT utilizes AASHTO's A Guide for Protective Screening of Overpass Structures.

The guide provides that screens should be considered under any of the following conditions:

1. Reported incidents of objects being dropped from an overpass.

2. On overpasses with walks where experience on nearby structures indicates a need for screens.

3. On overpasses in large urban areas used exclusively by pedestrians.

4. On overpasses near a school, a playground, or elsewhere where it would be expected that the overpass would be frequently used by children unaccompanied by adults.

B. Metro Region Criteria (9-2-2003)

The Region Project Development or Bridge Engineer shall be contacted to determine if pedestrian screening/fencing should be added to projects. General criteria:

1. When major bridge rehabilitation is scheduled for a structure, bridge screening shall be included.

2. Railroad structures shall have bridge screening due to the presence of ballast and discarded rail spikes.

3. Screening is not required for structures which do not normally have pedestrian access. This includes, but is not limited to, freeway to freeway connecting structures and all freeway ramp structures.

For additional information on pedestrian fencing, see Section 7.05 and Section 2.02.11.
Precast Three Sided/Arch Culverts

Design criteria and considerations:

A. The maximum span length available is 48’.

B. The number of manufacturers of the specified span length needs to be at least two.

C. When selecting culvert rise, consideration shall be given to users of the waterway, along with normal water surface under clearance and freeboard at high water.

D. With spans less than 16’-0” use “W-Beam Backed Guardrail, Type T” (Standard Plan R-72-Series) to span the culvert. With spans greater than 16’-0” extend height of headwalls to 36” above plan grade elevation and attach guardrail to headwall as detailed on the plans and according to the Special Provision for Precast Three Sided Culvert or Arch Culvert.

Additional information and criteria is included in the Frequently Used Special Provision for Precast Three Sided Culvert or Arch Culvert, which shall be included in all projects with precast culverts.
Deck Replacements

With deck replacements or widening projects (or reconstruction projects), the structural adequacy of the entire structure shall be evaluated. In addition to the criteria listed below, deck replacements shall meet all requirements listed in this chapter (e.g. slopes, shoulder width, stay in place deck forms and approach items).

A. Beams

1. On concrete T-Beam bridges the deck slab is an integral part of the support system and cannot be removed without dismantling the entire superstructure. The cost of deep chipping (or hydrodemolishing) combined with the installation of a cathodic protection system should be weighed against the cost of complete superstructure replacement.

2. On steel stringer bridges, the tops of beams shall be blast cleaned and coated with an organic zinc-rich primer. Shear connectors shall be placed to upgrade the capacity of existing non-composite decks. (12-5-2005)

3. On prestressed concrete box beam decks, the existing wearing course shall be replaced with a 6" reinforced deck.

B. Railings

Railings shall be upgraded when bridge deck replacements are planned. See section 7.02.28.

C. Geometrics

Criteria for roadway widths and design loading have been established in A Policy on Design Standards - Interstate System, 2005, and A Policy on Geometric Design of Highways and Streets, 2011, 6th Edition published by AASHTO. These criteria are based on the type of roadway carried by the structure and are summarized in this section. Non Interstate structures with deck replacements or widening projects (or reconstruction projects) shall adhere to A Policy on Geometric Design of Highways and Streets, 2011, 6th Edition design criteria (standards). Interstate structures shall adhere to A Policy on Design Standards - Interstate System, 2005. MDOT policy has set bridge (shoulder) widths 2' (offset) greater than AASHTO widths for safety considerations of the traveling public. See Bridge Design Guides 6.05 Series & 6.06 Series. (11-23-2015) (3-21-2016)
CLEAR ROADWAY WIDTHS AND DESIGN LOADING FOR DECK REPLACEMENTS

<table>
<thead>
<tr>
<th>Type of Roadway</th>
<th>Minimum Clear Roadway Width</th>
<th>Minimum Design Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Interstate Freeway</td>
<td>A, C</td>
<td>HS-20</td>
</tr>
<tr>
<td>Interstate Freeway</td>
<td>B, C</td>
<td>HS-20</td>
</tr>
<tr>
<td>Arterial (Non-Freeway Trunkline)</td>
<td>Rural</td>
<td>Exhibit 7-3.</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>D, C</td>
</tr>
<tr>
<td>Collector (Non-Trunkline)</td>
<td>Rural</td>
<td>Exhibit 6-6.</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>Exhibit 6-5., E</td>
</tr>
<tr>
<td>Local (Non-Trunkline)</td>
<td>Rural</td>
<td>Exhibit 5-6.</td>
</tr>
<tr>
<td></td>
<td>Urban</td>
<td>Exhibit 5-5., E</td>
</tr>
</tbody>
</table>

(A) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway or the minimum AASHTO requirements for lane and shoulder widths, whichever is greater.

(B) The minimum clear roadway provided shall accommodate the pavement and full shoulders of the approach roadway.

(C) For bridges in excess of 200'-0" in length, where the nearest offset from the edge of traveled way to either curb or barrier is greater than 4'-0" on the approaches, the nearest offset on the bridge shall be at least 4'-0" on each side. (12-5-2005)

(D) The minimum clear width on the bridge shall be the same as the curb-to-curb width of the street.

(E) The minimum clear roadway shall be the traveled way plus 1'-0" to each curb face. However, consideration should be given to providing the same width as the curb-to-curb approach width if it is cost effective to do so.
The tables shown below are derived from *A Policy on Geometric Design of Highways and Streets*, 2011, 6th Edition published by AASHTO and do not include clearances for bridge rail offset. See the Bridge Design Guides for MDOT offset criteria. (7-20-2015) (3-21-2016)

MINIMUM WIDTH OF TRAVELED WAY FOR RURAL ARTERIALS (FROM Exhibit 7-3.)

<table>
<thead>
<tr>
<th>Design Speed(mph)</th>
<th>Design Traffic Volume (veh/day)</th>
<th>Width of Traveled Way (ft)(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 400</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>400-1500</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1500 -2000</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>over 2000</td>
<td>24</td>
</tr>
<tr>
<td>40-45</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>50-55</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>60-75</td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

(a) Where the width of traveled way is shown to be 24 ft, it may remain 22 ft on reconstructed bridges where alignment and safety record are satisfactory.

MINIMUM CLEAR ROADWAY WIDTHS FOR RURAL ARTERIAL BRIDGES BEING RECONSTRUCTED (FROM Exhibit 7-3.)

<table>
<thead>
<tr>
<th>Design Traffic Volume(veh/day)</th>
<th>Min. Clear Roadway Width of Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>under 400</td>
<td>Traveled way + 4 ft (ea. side)</td>
</tr>
<tr>
<td>400-2000</td>
<td>Traveled way + 6 ft (ea. side)(b)</td>
</tr>
<tr>
<td>over 2000</td>
<td>Traveled way + 8 ft (ea. side)(b)</td>
</tr>
</tbody>
</table>

(b) For bridges in excess of 200 ft in length, a minimum width of traveled way + 4 ft on each side will be acceptable.

Exhibit 6-5. MINIMUM WIDTH OF TRAVELED WAY FOR COLLECTOR ROADS

<table>
<thead>
<tr>
<th>Design Speed(mph)</th>
<th>Design Traffic Volumes (veh/day)</th>
<th>Width of Traveled Way (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Under 400</td>
<td>20(a)</td>
</tr>
<tr>
<td></td>
<td>400-1500</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1500 -2000</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>over 2000</td>
<td>24</td>
</tr>
<tr>
<td>20-30</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>35-40</td>
<td>20(a)</td>
<td>22</td>
</tr>
<tr>
<td>45-50</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>55-60</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

(a) A 18 ft minimum width may be used for roadways with design volumes under 250 veh/day.
Exhibit 6-6. MINIMUM ROADWAY WIDTHS FOR NEW AND RECONSTRUCTED BRIDGES CARRYING RURAL COLLECTOR ROADS

<table>
<thead>
<tr>
<th>Design Traffic Volume (veh/day)</th>
<th>Minimum Roadway Width of Bridge</th>
<th>Design Loading Structural Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 and Under</td>
<td>Traveled way + 2 ft (each side)</td>
<td>HS -20</td>
</tr>
<tr>
<td>400 to 1500</td>
<td>Traveled way + 3 ft (each side)</td>
<td>HS -20</td>
</tr>
<tr>
<td>1500 to 2000</td>
<td>Traveled way + 4 ft (each side)<sup>(a)</sup></td>
<td>HS -20</td>
</tr>
<tr>
<td>over 2000</td>
<td>Traveled way + shoulders<sup>(a)</sup></td>
<td>HS -20</td>
</tr>
</tbody>
</table>

^(a) Where the approach traveled way plus shoulders is surfaced, that surfaced width shall be carried across all structures. For bridges in excess of 100 ft in length, the minimum width of traveled way plus 3 ft on each side will be acceptable.

Exhibit 5-5. MINIMUM WIDTH OF TRAVELED WAY FOR LOCAL ROADS

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Design Traffic Volumes (veh/day)</th>
<th>Under 400</th>
<th>400-1500</th>
<th>1500-2000</th>
<th>over 2000</th>
<th>Width of Traveled Way (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>45-50</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>55-60</td>
<td>22</td>
<td>22</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Where the width of traveled way is shown as 24 ft, the width may remain 22 ft on reconstructed bridges where alignment and safety records are satisfactory.

Exhibit 5-6. MINIMUM CLEAR ROADWAY WIDTHS AND DESIGN LOADINGS FOR NEW AND RECONSTRUCTED BRIDGES CARRYING RURAL LOCAL ROADS

<table>
<thead>
<tr>
<th>Design Traffic Volume (veh/day)</th>
<th>Min. Clear Roadway Width of Bridge</th>
<th>Design Loading Structural Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT 400 & under</td>
<td>Traveled way + 2 ft (ea. side)</td>
<td>HS -20</td>
</tr>
<tr>
<td>ADT 400-2000</td>
<td>Traveled way + 3 ft (ea. side)</td>
<td>HS -20</td>
</tr>
<tr>
<td>ADT over 2000</td>
<td>Traveled way + shoulders</td>
<td>HS -20</td>
</tr>
</tbody>
</table>
7.02.32

Ride Quality (8-20-2012)

The purpose of a ride quality specification is to obtain a smoother riding pavement than is typically obtained with the traditional 10 foot straightedge smoothness requirements. Michigan first adopted a ride quality specification in 1979. The current specification prescribes classified levels of ride quality requirements described in subsequent paragraphs of this section.

Specific requirements for ride quality are identified by classification. Each classification (Class I, II, III & IV) specifies criteria for roughness, method of measurement, applicable incentives, disincentives, and corrective action. The matrix on the following page provides instructions for assigning ride quality classification based on scope of work, design speed, grade control and adaptability to production paving.

Ride quality requirements are not intended for application with stand-alone bridge projects. However, bridge deck replacements, and shallow or deep concrete bridge overlays included within the limits of a Class I ride quality section in a corridor project will be subject to ride quality requirements.

Using these criteria, the road designer will assign a ride quality classification to each applicable section of paving throughout the project. The locations and classifications are then tabulated for inclusion in the Notice to Bidders (generally done by the road designer).

The bridge designer will recommend if the bridge portions of a Class I section are to also be designated as Class I or are to be excluded by designation as Class II based on the type of work and adaptability to corrective deck grinding.

Within Class II, III, and IV areas, bridges are predetermined excluded areas from ride quality specifications between the two end reference lines or between the outermost limits of any structure expansion joint devices.

7.02.32 (continued)

The only pay item associated with ride quality is bump grinding. A small quantity should be included for each location where the contractor may be directed to grind *existing* pavement (i.e.: pavement not placed as part of the contract) in order to smooth the transition from old to new pavement. This includes the POB, the POE, and any *existing* bridge or railroad approaches within the project limits. 25 square yards for each lane at each of the above locations should suffice.

Bump grinding is normally not paid for in areas excluded from ride quality. Instead the pavement is accepted or rejected based on the 10 foot straightedge criteria. *(Standard Specifications for Construction)* If it does not meet the straightedge criteria, it is the contractor’s responsibility to grind or replace at their cost.

For additional information on ride quality see the Road Design Manual section 6.04.05.
Ride Quality Classification Selection Matrix

<table>
<thead>
<tr>
<th>How To Use This Matrix</th>
<th>Contractor has control over grades</th>
<th>Contractor has limited or no control over grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3R (3)</td>
<td>4R (3)</td>
</tr>
<tr>
<td>Section length allows for production paving (4)</td>
<td>Design Speed below 50 mph</td>
<td>Class II</td>
</tr>
<tr>
<td></td>
<td>Design Speed 50 mph or above</td>
<td>Class I or II</td>
</tr>
<tr>
<td>Section length does not allow production paving (4)</td>
<td>Design Speed below 50 mph</td>
<td>Class III</td>
</tr>
<tr>
<td></td>
<td>Design Speed 50 mph or above</td>
<td>Class II</td>
</tr>
</tbody>
</table>

Key:
- Class I Ride Quality: Complete Projects (mainline only) where no excluded areas are allowed, a threshold IRI criteria must be met, and incentives and disincentives apply. Use Class I only on limited access roadway with design speeds 50 mph or greater and where most or all bridges include deck replacement, shallow concrete overlays, or deep concrete overlays. Investigate the feasibility of diamond grinding (at MDOT cost) any bridge decks not being replaced or overlaid. Where diamond grinding a bridge deck is not feasible, a limited section of the project can be designed as Class II Ride Quality such that the bridge would be a pre-determined excluded area within a project that would otherwise meet Class I ride Quality criteria.
- Class II Ride Quality: Sections where threshold IRI criteria must be met, but incentives and disincentives do not apply. (Use Class II if all of the above requirements for Class I are not met.)
- Class III Ride Quality: Sections where the pre-construction IRI must be maintained or improved by a certain percentage. Disincentives may apply.
- Class IV Ride Quality: Sections where acceptance is based on a 10 foot straightedge criteria. Incentives and disincentives do not apply.
- N/A = Not Applicable

Footnotes:
1. A Section is defined as a length of paving which has the same characteristics (grade control, type of work, design speed).
2. Locations where a contractor might not have control of grades include locations where they must pave adjacent to an existing lane with marginal ride quality, locations where there are existing curbs to match, and locations where there are frequent existing manholes or structures to meet.
3. 3R means resurfacing, restoration, and rehabilitation. Primary examples include multiple course resurfacing, milling or profiling, concrete overlays and inlays (without removing subbase). 4R means new construction or reconstruction. A primary example is complete removal and replacement of pavement (including subbase). See Chapter 3 for further definition and examples including projects with combined 3R and 4R work for classifications purposes on projects with multiple fixes.
4. Production paving means a slipform paver can be used for concrete paving and that a HMA paver can be used without frequent stopping and starting and there is room for a haul truck to unload directly into the paver or a material transfer device while in motion. MDOT imposed construction staging requirements should be considered when making this determination.
7.03

SUBSTRUCTURE

Design structures by placing all substructure units (piers & abutments) and slopes outside of the clear zone. For clear zone distances see Bridge Design Guide 6.06.06 or Chapter 7 of the Road Design Manual. For substructure clearances also see Bridge Design Guide 6.06.01-.04. Provide guardrail protection for units or slope that cannot be placed outside of the clear zone. Place guardrail at a distance that will allow deflection as defined in Chapter 7 of the Road Design Manual. Design piers with base walls and guardrail approach terminals to maximize clear roadside distance in lieu of shielding piers with guardrail. Attach guardrail to base walls as detailed on Standard Plan R-67-Series. (11-28-2011)

7.03.01 (continued)

B. Types

1. Cantilever Abutment

The maximum wall height for cantilever abutments is approximately 25'-0".

2. Counterfort Abutment

Counterfort abutments should be considered when wall heights exceed 25'-0".

3. Curtain Wall Abutment

Curtain wall abutments are to be considered where piles are required under the abutment and the abutment height does not exceed 9'-6" (see Bridge Design Guide 5.18.01).

Curtain wall abutments of sufficient length to require expansion joints are to have the end piles battered outward parallel to the reference line. The purpose of this is to prevent the expansion joint from opening excessively.
Abutment Design

B. Types

4. Integral and Semi-Integral Abutments

Integral and semi-integral abutments shall be used where practical to avoid deck joints. (5-1-2000)

Integral Abutment

Abutment walls (stub type) supported by one row of piles that allow movement through pile flexure (see Bridge Design Guide 6.20.04 series). Walls shall be a minimum of 5'-0" and 12'-0" maximum in height. The H-Pile webs shall be oriented parallel to the bridge reference lines and embedded 30" into the abutment wall. Upon recommendation from Geotechnical Services Section pile holes shall be prebored. In general, integral abutments do not have return wingwalls.

A separate design analysis needs to be performed on the abutment wall for active and passive pressures. Additional vertical dowels may be required at the abutment and backwall interface to resist the active surcharge and the passive resistance that have been introduced into the wall from bridge expansion. Additional vertical reinforcement may be required in the abutment wall and should also be designed. The pile spacing may need to be adjusted to prevent shear stress failure in the pile.

Due to scour considerations, the designer should usually avoid using Integral abutments at stream crossings. (5-1-2000)

Semi-Integral Abutment

Conventional abutment walls fixed in position with expansion and contraction movement of the bridge superstructure (see Bridge Design Guide 6.20.04 series). Abutments with a single row of piles should not be used.

The following design criteria are valid for both types of abutments.

a. Steel bridges are to be less than 300'-0" and concrete bridges are to be less than 400'-0" in length.

b. Use approach slab details on Standard Plan R-45-Series when the length of bridge contributing to expansion at an abutment is less than 50'-0" for concrete beam bridges and less than 25'-0" for steel beam bridges. (8-20-2009)

c. Angle of crossing shall be 60 degrees minimum and 120 degrees maximum. See Section 7.01.14 for MDOT skew policy. (12-5-2005)

d. Backfill shall be "Backfill, Structure, CIP" as per Standard Specifications.

Place aggregate base or open graded drainage course (OGDC) over structure backfill to support approach slabs, sleeper slabs and approach curb and gutter. (10-22-2012) (12-28-2015)

e. Pavement seats shall be 6" max and cantilevered pavement seats shall be avoided.
Abutment Design

B. Types

4. Integral and Semi-Integral Abutments

f. Approach slabs shall be 20'-0" in length whenever possible.

Approach slabs with independent backwalls can be 6'-6" minimum length. For design speeds greater than 45 mph (posted > 40 mph) approach slabs should be as near to 20’ (measured along roadway centerline) as project and geometric limitations allow. Use shorter approach slab length (6'-6" min) if service road is in close proximity to the bridge abutment. (12-28-2015)

Slab ends at abutments with skew angle of 30° or less can maintain abutment skew angle at sleeper slab and end of slab. Slab ends at abutments with skew angle greater than 30° should have the sleeper slab and end of slab perpendicular (90°) to the roadway centerline. (12-28-2015)

Cast from sleeper slab towards reference lines at night with “Superstructure Concrete, Night Casting,” and match the road approach thickness (9” minimum).

Consideration shall be given to a 20' concrete approach pavement as detailed on Standard Plan R - 43&45 - Series located on the road approach side of the sleeper slab (especially with approach slabs less than 20’ in length).(10-22-2012)

Designate approach slabs as separate pours in the pour sequence of the superstructure. (9-21-2015)

See Bridge Design Guide 6.20.03A, .03B, .03C, 6.20.04 & .04B for approach slab details. (12-28-2015)

g. Continue bottom mat of steel 2'-0" past reference line into the approach slab.

h. Add extra reinforcement over beams at the reference line that extend 2'-0" into the approach slab and 2'-0" into the bridge deck slab.

i. Attach approach curb and gutter to the approach slab with bottom mat transverse reinforcement and to the bridge deck with bottom mat longitudinal reinforcement. Do not attach curb and gutter to the approach slab or the bridge deck on structures with return wingwalls.

j. A sleeper slab shall be used with all approach slabs (except when Standard Plan R-45-Series approach is used) and shall have a stub (including hot mix asphalt (HMA) pavements). Concrete to concrete slabs shall have an EJ3 (or EJ4) joint on the bridge side of the stub and an E3 joint on the road side. Concrete to HMA slabs shall have an EJ3 (or EJ4) joint on the bridge side of the stub and no joint on the road (HMA) side. Provide elevations along stub of sleeper slab at construction centerline, lane lines and edge of metal. Provide elevations at toe of curb/barrier and top of curb if present. (12-5-2005) (9-21-2015)
Abutment Design

B. Types

5. Spill – Through Abutment (9-24-2018)

A spill-through abutment has fill-slope with a revetment on the streamward side.

a. Definitions

1) Fill slope: side or end slope of an earth-fill embankment. Where a fill slope forms the streamward face of a spill-through abutment, it is regarded as part of the abutment.

2) Revetment: rigid or flexible material designed and placed to inhibit scour or erosion.

b. Design Considerations

1) The dimensions and elevations of the revetment must be as defined by the Hydraulics Unit.

2) If the Hydraulics Unit determines there is a high probability of the river laterally migrating over time, consideration shall be given to:

 a) Design the span lengths and substructure locations to accommodate the future path of the river.

 and/or

 b) Resist migration with stream armoring and/or design the abutment to remain stable at the 500-year flood event after stream migration has occurred.

3) Additional ROW may be necessary to provide sufficient revetment, as defined by the Hydraulics Unit.

A multidisciplinary team consisting of the Hydraulics Engineer, Geotechnical Engineer and the Structural Engineer (Bridge Designer) should convene to determine the best design option when stream meandering is likely.

See Bridge Design Guide 5.47.01 for details and MDOT Drainage Manual section 6.4.5.6. for additional design criteria.
7.03.01 Abutment Design

C. Wall Design

1. Wall Thickness

 The minimum wall thickness for abutments is 2'-0". This is to be increased in 2" increments when required to provide 4½" minimum clearance between edge of masonry plate (or elastomeric pad) and front face of the abutment. (8-6-92)

2. Cantilever Wall Design

 Cantilever walls 16'-0" or higher are to be designed for both bending and direct stress.

3. Steel Reinforcement

 All wall reinforcement shall be epoxy coated. Horizontal bars in the front faces of abutment walls should be continued around the corners at the wingwalls. EC#6 bars are to be placed diagonally across the inside corners. (5-6-99)

4. Vertical Construction Joints

 a. There is to be vertical continuity of all construction joints from the footing upward; however, a wall joint does not require a footing joint below.

 b. Spacing

 (1) Curtain wall abutments - 35'-0" maximum spacing.

 (2) Cantilever abutments - 25'-0" maximum spacing.

5. Horizontal Construction Joints

 For walls over 30'-0" high, there should be a horizontal construction joint approximately at mid-height. (9-2-2003)

6. Vertical Expansion Joints

 Vertical expansion joints shall be spaced approximately 90'-0" apart. There should be a construction joint in the footing directly below each expansion joint in the wall.

7. Bridge Seat Steps

 Where the bridge seat is stepped, the ends of the steps shall be at 45° to the bridge seat and parallel to the centerline of the bridge to accommodate any movement due to temperature changes. (5-6-99)

8. Pavement Seats

 Pavement seats are to be provided on all bridges. They should be cantilevered from the rear face of independent backwalls. (5-6-99)
7.03.02

Footing Design

A. Footing Thickness

The minimum thickness of footings is normally 2'-6"; however, this may be reduced to 2'-0" for short walls. When the wall thickness at its base becomes 3'-0" or greater, the footing thickness is to be increased to 3'-0. Footing thicknesses are to be increased in 6" increments.

B. Footing Width (12-5-2005)

Spread footings should be sized so that the safety factor for overturning about the toe of footing is at least 2.0. The minimum footing width is 6'-0" for cantilever abutments and 4'-0" for curtainwall abutments. Footings with piles should be sized so that the resultant force is located between rows of piles.

C. Footing Joints

Construction joints should be placed in footings to limit concrete pours to 90 CYD. These joints are provided for construction convenience and should be labeled "optional." Where a footing joint is used, it should be located directly under a wall joint.

D. Footing Elevations

Bottoms of footings are normally set 4'-0" below existing or proposed ground line to avoid frost heave. For substructure units in or adjacent to a waterway, bottoms of footings are normally to be set 4'-0" below bottom of channel; where tremie seals are used, the bottoms of footings may be set higher. The Hydraulics/Hydrology Unit shall be consulted for an estimate of the total potential scour depths at the foundations. The tops of footings shall be set at or below the estimated elevation of contraction scour (scour resulting from the constriction of the waterway at the crossing). Structure stability shall be analyzed based on the estimate of total scour at each substructure unit with the advice of geotechnical engineers. If necessary, countermeasures to prevent scour will be incorporated according to FHWA and AASHTO standards. (5-6-99)

7.03.02 (continued)

E. Steel Reinforcement

Where a tremie seal is used and there are no piles, the bottom footing reinforcement shall be 9" above bottom of footing. Where a tremie seal is used and there are piles, the reinforcement shall be 1'-3" above the bottom of footing.

F. Passive Soil Pressure

1. Passive soil pressure may be used in the footing design for retaining, wing and return walls, but not for abutments, to resist sliding and overturning forces. Generally, these resisting forces shall be relied upon only when the footing is in a cut and the soil is not disturbed. The location of utility trenches and edge drains should be considered in making a determination of undisturbed soil. In a river environment, passive soil pressure shall not be used.

Use resistance factors for sliding of spread footings as defined in AASHTO LRFD Table 10.5.5.2.2.-1. Use resistance factor of 0.80 for cast in place concrete on sand and use (where allowed) resistance factor of 0.50 for passive earth pressure component of sliding resistance. (8-20-2009)

2. When the passive soil is on a slope, the soil height shall be reduced as follows:
 a. Berm with 1V:2H slope - reduced 1'-0"
 b. 1V:2H slope - reduced 2'-0"
7.03.02 (continued)
Footing Design

G. Bearing Resistance – Spread Footings
(8-20-2009)

1. Geotechnical Engineer shall provide:
 a. Nominal Bearing Resistance \(q_n \)

 1) For foundations on rock, a single value of nominal bearing resistance \(q_n \) will be provided for all footing widths.

 2) For foundations on soil, nominal bearing resistance \(q_n \) will be provided graphically, by plotting nominal bearing resistance \(q_n \) versus effective footing width \(B' \).

 b. Strength limit state resistance factor for bearing resistance \(\phi_b \) and sliding resistance \(\phi_t \). Refer to AASHTO LRFD Table 10.5.5.2.2-1.

 c. Service limit state resistance factors shall be taken as 1.0, except as provided for overall stability.

2. Foundation recommendation memo/report investigates nominal bearing resistance \(q_n \) based on:
 a. Bearing failure – Strength Limit State
 b. Tolerable settlement criteria – Service Limit State (1.5” max settlement recommended by MDOT)

7.03.03
Pier Design

A. Future Widening

On bridges where we are to provide for future widening, a vertical construction joint, as shown in Bridge Design Guide 5.27.03, is to be provided in the pier cap.

B. Column

1. Size

 In general, 3’-0” diameter columns should be used with 42” or greater beam depths and 2’-6” diameter columns with beams less than 42”, unless loading conditions or bearing areas dictate larger columns.

2. Reinforcement

 Care should be used in spacing vertical column bars in order to avoid excessive interference with the pier cap reinforcement. Double rows of column bars or larger diameter columns should be considered to alleviate this problem.

3. Construction Joint

 If pier columns are over 30’-0” high, a construction joint should be placed at approximately mid-height.

4. Spacing

 Columns should be spaced far enough apart so as to be appealing to the eye; if beam spacing is far enough apart, a column may be placed under each bearing. Use a maximum column diameter (or width) to column spacing ratio of 1:8. (5-6-99)
7.03.03 (continued)

Pier Design

C. Pier Caps

1. Size

The pier cap is to be approximately 3" wider than the diameter of the column and should provide 4½" minimum clearance between the edge of masonry plate (or elastomeric pad) and the face of the cap.

Hammer head pier caps are occasionally used on MDOT projects. These piers have a greater tendency for cracking in the tension zone than standard pier caps. Design procedures to prevent cracking (especially in tension zone), including post tensioning the caps, must be investigated. (9-2-2003)

2. Bolsters

When one end of the pier cap is on a considerably different elevation than the other, the difference shall be provided for by increasing the column heights as shown below.

![Diagram of Pier Cap with Bolsters](image)

Ends of bolsters are perpendicular to the faces of the cap and rise at 90° from the top of the pier.

3. Joints

Construction joints should be provided at 25'-0" maximum spacing. A 1" open joint may be required to control temperature moments in long piers with short columns.

7.03.03 (continued)

4. Reinforcement Steel Spacing

In order to permit the vibrator to adequately penetrate and vibrate the concrete in pier caps, the clear distance between the top bars should not be less than 3½". This may, in some cases require the use of special size bars or double rows of bars.

5. Part Width Construction of Cantilevered Pier Caps (12-5-2005)

To reduce potential problems with large pier cap cantilevers during construction, design procedures to prevent cracking in the tension zone, including post tensioning the caps, must be investigated.

a. Avoid splicing reinforcement at points of maximum stress. Where this is not practical, stagger the splices.

b. Calculate the clear distance between contact lap splices assuming the bars are placed in a horizontal plane unless otherwise noted on the plans.

c. Use temporary supports during staged construction to shore cantilevered pier caps exceeding five feet in length.

d. Design structural elements using a dead load factor of 1.5 if live loads (unanticipated construction loads) are not applied to elements.

D. Pier Base Walls or Filler Walls

Piers that are within the clear zone or in a median where barriers are required should have base walls. Piers that will have guardrail attached to or concrete barrier butted up to piers shall have base walls (new construction) or filler walls (existing piers). Piers with filler wall are acceptable but not preferred on new construction or reconstruction projects. Piers behind guardrail or concrete barrier do not need filler or base walls. The base wall is to be 3" wider than the column to prevent vehicle snagging and should extend 3'-6" (min.) above the ground line. Any approach guardrail is to be anchored to the base wall or filler walls according to Standard Plan R-67-Series. (5-1-2000) (11-28-2011)
7.03.04

Cofferdams (8-6-92)

Cofferdams shall be used on all substructure units where tremie concrete is required for water control. When shallow water is present; i.e., less than 2'-0", other methods of water control that allow the contractor maximum flexibility may be appropriate. The Geotechnical Services Section should be contacted in this case to determine if a cofferdam is required. (2-26-2018)

The driving line for cofferdam sheet piling shall be 1'-6" outside the footing outline or at the edge of the tremie concrete. Deep excavations may use driving line greater than 1'-6" outside the footing outline to allow for more efficient bracing schemes. Consult with Geotechnical Services Section. (8-20-2009)

Since a cofferdam is generally a sheeted enclosure, the plans should show and note the limits of the enclosure. The contractor must know if he will be required to completely enclose the excavation or whether sheeting on three sides will suffice.

Often, a portion of a sheet pile cofferdam is to remain in place. On these projects, there will be two bid items. "Steel Sheet Piling, Temporary, Left in Place" will be measured and paid for in the specified manner. The remainder of the enclosure along with dewatering, etc., will be paid for as "Cofferdams." This division of pay items should be clarified by a plan note.

When cofferdams are not used on structures crossing streams or encroaching on water courses, Plan Note 8.05(L) shall be used.

Where a sheet piling enclosure is required for lateral soil support but not for the exclusion of water, “Steel Sheet Piling, Temporary” should be called for.

For additional information see Subsection 7.01.10.

7.03.05

Subfootings

Subfootings are only to be used under footings placed in streams, rivers, or below the ground water table. Subfootings are to extend 1'-3" outside of footing lines and normally are to be 3½" thick; where water and/or soil conditions are such that unsuitable conditions might arise, subfootings may be 5½" thick. Foundation excavation limits are still to be only 1'-6" outside of footings. Concrete for subfootings is to be bid separately as "Conc, Grade S2, Subfooting" and has the material properties of Concrete, Grade S2. (8-20-2009)

7.03.06

Tremie Seal Design

Generally, tremie seals should be called for on all structures where it is expected that difficulty will be encountered in pumping the water down below the bottom of footing. Do not include weight of tremie when computing pile loads except when the estimated scour depth is below the bottom of tremie. (5-6-99)

A. Design

The tremie seal shall be designed to resist the hydrostatic pressure at the bottom of the tremie by a combination of its weight, plus the bond on the cofferdam and piles. The allowable bond stress is 10 psi on the piles and 5 psi on the cofferdam, providing the piles and the sheeting have sufficient resistance from dead weight and soil friction to resist the load thereby induced. Where shells are used or permitted as an option, the total resistance available will be the weight of the shell plus soil friction less any buoyancy force exerted on the shell. Allowable tension in bending on the tremie seal is 30 psi.

B. Hydrostatic Head

Hydrostatic head should be figured from bottom of tremie seal to ordinary water surface elevation. Include note 8.05 M on plans. (5-6-99)
Excavation

All foundation excavation is to be "Excavation, Foundation" unless there is a considerable amount of rock excavation involved; in this case, excavation is to be divided into two bid items: "Excavation, Rock Foundation" and "Excavation, Foundation."

Unbraced excavations adjacent to in-service spread footings shall not be permitted. Earth retention designs shall be sealed by a licensed engineer. (11-28-2011)

Steel Sheet Piling

For additional information see Subsection 7.01.10.

Evaluate the potential for vibration induced damage to existing structures and utilities. (11-28-2011)

A. Driving Line

1. Temporary Steel Sheet Piling

 The driving line for temporary steel sheet piling is 1'-6" outside the footing outline or at the edge of the tremie seal.

2. Permanent Steel Sheet Piling

 The inside face of permanent steel sheet piling is to be along the footing outline. Allowance for additional concrete and excavation is to be made due to the structural shape of the sheet piling.

B. Lateral Limits

Lateral limits of open-ended permanent sheeting must be extended beyond the limits of the required excavation. For estimating this extension, use a 1V:1H slope from bottom of excavation to existing ground.

C. Temporary Steel Sheet Piling Left in Place

On some projects requiring temporary sheeting, it is specified that the sheeting be left in place. The sheeting is not required for permanent support, but disturbance caused by its removal could be damaging. The bid item "Steel Sheet Piling, Temporary, Left in Place" is used in these instances. (5-6-99)

In general, sheeting at stage lines that is adjacent to permanent backfills should be specified as left-in-place and cut off to approximately 3' below the final pavement grade. If sheeting must be removed, contact the Geotechnical Services Section to determine feasibility. (2-26-2018)
D. Permanent Steel Sheet Piling

1. Design

A required section modulus is calculated based upon a piling design. (MDOT Geotechnical Services Section may recommend a section modulus.) A section is chosen from Appendix 7.03.08 D. (Sheet Piling Section Moduli) using the tabulated “effective” modulus in place of the calculated section modulus.

(2-26-2018)

Cold rolled sections have an additional reduction factor, thus it is possible to have a cold rolled section with a higher nominal section modulus, but a lower effective section modulus. To avoid field substitutions resulting in less than designed “effective” section modulus, the plans shall indicate the minimum acceptable nominal section modulus for both hot and cold rolled sections based on values given in Appendix 7.03.08 D. (see note 8.06.07C).

(2-26-2018)

In addition to Appendix 7.03.08 D., which is to be used for all permanent installations, sheet piling sections subject to severe environments should also be hot dipped galvanized.

Designers are responsible to determine the domestic production and availability of the sheet piling sections they specify. (2-26-2018)

2. Background/Commentary

Appendix 7.03.08 D. was developed by the Illinois DOT. It contains sheet pile sections and their effective section modulus. This effective modulus was calculated by reducing the nominal value for the effects of corrosion, and in some cases for a Hartman reduction factor.

Hartman Reduction Factor - tests by Hartman Engineering indicate that cold rolled sections failed at 83% of the expected value based on conventional bending theory. The Hartman study concluded that these failures were because the cold rolled sections have larger widths, depths, and width to depth ratios which promote failure prior to yielding the tension flanges. Cold rolled sections shown on the table have their section modulus reduced by 17% to account for the lower yield values. Illinois DOT took the report’s conclusion a further step and applied the Hartman reduction factor to “light duty” hot rolled sections also.

Corrosion - all tabulated sections were reduced to mitigate the effects of corrosion. Illinois DOT assumed a 50 year service life and a corrosion of about 0.00059 inches per year. This translates to about 1/17” of total corrosion (two sides) for the service life.

MDOT requires a 75 year service life and a slightly higher corrosion rate, thus the requirement for hot dipped galvanized sections in severe environments.
7.03.09 (continued)

3. Economic Analysis to Determine Nominal Pile Driving Resistance (R_{ndr}) (8-20-2009)

For driven pile, an economic analysis of the foundation support system shall be completed optimizing pile type, pile section and construction quality control method pertinent to the particular project in question. The Resistance Factor for Driven Piles (ϕ_{dyn}) used in design determines the construction quality control method that must be used to certify the Nominal Pile Driving Resistance (R_{ndr}). Do not specify dynamic testing with signal testing (P.D.A. testing) for H-piles driven in non-cohesive soil profiles where the driven pile length is expected to exceed 80 feet. Use AASHTO LRFD Tables 10.5.5.2.3 - 1, 2 & 3 in analysis and resistance factor determination and coordinate findings with Geotechnical Services Section. For additional information on pile resistance see section 7.03.09 B. (11-28-2011) (2-26-2018)

General rules for Resistance Factor (ϕ_{dyn}) (detailed analysis shall be performed):

<table>
<thead>
<tr>
<th>Project Driven Pile Cost</th>
<th>Pile Certification Method</th>
<th>Resistance Factor(ϕ_{dyn})</th>
</tr>
</thead>
<tbody>
<tr>
<td><$300,000</td>
<td>FHWA-Modified Gates Formula</td>
<td>0.50</td>
</tr>
<tr>
<td>\geq300,000</td>
<td>Dynamic Testing/ Signal Matching (PDA Testing)</td>
<td>0.65 *</td>
</tr>
<tr>
<td>$>$500,000</td>
<td>Static Load Test with Dynamic Testing/ Signal Matching (PDA Testing)</td>
<td>0.80</td>
</tr>
</tbody>
</table>

* This resistance factor applies to the Beginning of Redrive (BOR) case. Do not specify PDA testing for End of Drive (EOD). (11-28-2011) (9-21-2015)
7.03.09 (continued)

Piles

A. General

4. Test Piles

Test piles are to be provided for all projects using piles unless the Geotechnical Services Section determine that they are not necessary. (2-26-2018)

At least two test piles shall be provided for at each substructure unit placed on piles.

Timber test piles shall be located in a manner that will best serve as a basis for ordering the balance of the piles.

5. Pile Embedment

Piles are to be extended into the footing a distance of 6". When a tremie seal is used, the piles are to be extended into the footing a distance of 1'-0".

6. Concrete Displaced by Piles

No deductions in concrete quantities will be made for steel pile embedments or for pipe pile embedments of 1'-0" or less.

7. Edge Distance

The usual minimum edge distance for piles is 1'-6". This may be reduced to 1'-3" where special conditions require.

8. Abutment Piling

When piling is required for abutments, a careful study should be made to ensure that the piling will clear previously placed or proposed culvert pipe.

9. Pile Batter

Generally, piles are to be battered no flatter than 3V:1H. Where soil conditions are not good enough to provide sufficient lateral pile resistance, we may increase the angle of batter to 2.5V:1H or even 2V:1H. This measure, however, should be a last resort since it is difficult to maintain driving accuracy when the batter is flatter than 3V:1H.

10. Pile Numbering

A pile numbering scheme shall be shown on the plans for those units having piles. Each pile shall be assigned a number in a particular row or on an individual basis.

11. Lateral Pile Resistance (8-20-2009)

Lateral pile resistance as determined by a Geotechnical Engineer may be used to resist horizontal forces on substructure. See AASHTO LRFD Bridge Design Specification 10.7.

Scour potential for the structure shall be accounted for when the Geotechnical Engineer determines nominal horizontal pile resistance.

Driven piles located within a distance of 100 ft of historic or vibration sensitive structures shall be evaluated for damage potential from vibration and/or vibration induced settlement.

Driven piles shall not be located within a 25 ft radius of existing spread footings, critical utilities, or in-service pavements without mitigation and/or vibration and settlement monitoring specifications.
7.03.09 (continued)

Piles

B. Nominal Pile Resistance (R\text{\text{n}})
(8-20-2009)

Design substructures with an initial nominal pile resistance of 350 kips. In some cases, the soil profile will indicate that a higher or lower nominal pile resistance would be more economical. The recommendation from the Geotechnical Services Section will indicate what nominal pile resistance to use. (11-28-2011) (2-26-2018)

1. Pile Designation/Maximum Nominal Pile Driving Resistance (R\text{\text{ndr}})

 a. Steel H Piles (11-28-2011)

Pile	(R\text{\text{ndr}})
HP 10X42	275 kips
HP 10X57	350 kips
HP 12X53	350 kips
HP 12X74	500 kips
HP 12X84	600 kips
HP 14X73	500 kips
HP 14X89	600 kips

 b. Metal Shell Piles
(11-28-2011)(8-20-2012)

Pile	(R\text{\text{ndr}})
Metal Shell 12” O.D. w/0.312” Walls	250 kips
Metal Shell 14” O.D. w/0.312” Walls	350 kips
Metal Shell 16” O.D. w/0.375” Walls	500 kips

 c. Timber Piles

Pile	(R\text{\text{ndr}})
Timber Pile	150 kips

7.03.09 B. (continued)

A wave equation analysis, which uses typical pile types and driving equipment known to be locally available, shall be performed by the Geotechnical Engineer to verify drivability. (11-28-2011)

Steel H-Piles shall be according to AASHTO M270 Grade 50. Metal shell piles for CIP piles shall be according to ASTM A252 Grade 3.

2. In general, the Resistance Factor for Driven Piles (\text{\varphi}_{\text{\text{dyn}}}) = 0.50 assuming that the Nominal Pile Driving Resistance (R\text{\text{ndr}}) is verified using the FHWA-modified Gates Dynamic Formula. The Resistance Factor (\text{\varphi}_{\text{\text{dyn}}}) = 0.65 when dynamic testing with signal matching (P.D.A. testing) is used and (\text{\varphi}_{\text{\text{dyn}}}) = 0.80 with static load tests. (See AASHTO LRFD Table 10.5.5.2.3-1 Resistance Factors for Driven Piles) (11-28-2011) (11-23-2015)

3. In general, Resistance Factor (\text{\varphi}_{\text{\text{dyn}}}) times the Nominal Pile Resistance (R\text{n}) = Factored Nominal Resistance (R\text{R}).

 \((\text{\varphi}_{\text{\text{dyn}}}) \times (R\text{n}) = (R\text{R})\)

 The above equation does not hold true in the case of possible downdrag, and/or scour.

4. The nominal pile resistance to be shown on the plans should be equal to the actual demand, based on the final pile layout, divided by the appropriate Resistance Factor for Driven Piles (\text{\varphi}_{\text{\text{dyn}}}), rounded up to the nearest 10 kips. Do not simply use the Maximum Nominal Pile Driving Resistance (R\text{\text{ndr}}) for the pile type. (2-26-2018)
7.03.09 (continued)

Piles

C. Pile Quantities

1. Cast-in-Place Concrete Piles

 The following items shall be shown on the plans:

 a. Length of each pile - Furnished and Driven.*

 b. Total length of piles - Furnished and Driven.

 c. Test piles - Each (Furnished and Driven length plus 10').*

 d. Number of pile points - Each. (Use when a special pile point is required.)

 e. Furnishing equipment for driving piles - Lump Sum.

 *Length to the nearest 5’. (5-6-99)

2. Steel H Piles

 Use the same items as cast-in-place concrete piles except exclude pile points.

3. Piles of Designated Nominal Pile Resistance

 Use the same items as cast-in-place concrete piles except exclude pile points and pile splices.

7.03.10

Slope Treatment Under End Spans

A. Type

1. New Bridges

 On all new grade separations, "Slope Paving, Concrete" is to be placed under the end spans on the berm and backslope to the bottom of ditch. (5-6-99)

2. Widening Projects

 On widening projects, match existing slope protection if the material is reasonably available.

 If pier widening is located within the clear zone shielding (or filler walls) with guard rail is required. (11-28-2011)

3. Stream or River Bridges (5-6-99)

 The Hydraulics/Hydrology Unit will specify riprap to be used as a scour countermeasure. A special provision for well-graded riprap for foundations shall be included in the proposals of projects where there is either pressure flow or velocities exceeding 7 feet per second. See Subsection 8.05 for hydraulic analysis and design guides for approved methods of stream diversion.

B. Dual Structures

 For dual structures on a common abutment, call for slope protection on the slope and berm between the structures.

C. Limits

 The slope protection is to be extended 1'-6" beyond the slab fascias or for structures with turnback wingwalls, it should extend to outside face of the wingwalls.

 Generally, riprap is to be placed on all disturbed slopes to an elevation of 2'-0" above extreme high water. Under the deck riprap shall extend to the face of the abutment.
7.03.11
Concrete Sealers (5-1-2000)

When substructure units are new or patched; the entire surface of the substructure unit shall be coated (sealed) to prevent deterioration.

The following materials are used as sealers or waterproofing agents:

A. Elastomeric Sealers

These materials are a rubberized coating. Besides sealing, they create a uniform color and texture making them a good aesthetic treatment. Use Elastomeric sealers on all substructure surfaces where aesthetics are important. (Where aesthetics are an issue, consult the Roadside Development area for coloring considerations.) Use elastomeric sealers on patching projects to mask the mottled look of the patching.

B. Penetrating Waterproofing Sealers

Clear sealers with the consistency of water. Provide sufficient protection for vertical surfaces of substructure units but offer no aesthetic value. Use to seal substructure units where aesthetics are not important. Use on top surfaces only where the substructure unit is not under an expansion joint.

C. Epoxy Sealers

Opaque sealers offer a (nearly) impenetrable barrier. Use epoxy sealers to coat the top horizontal surface of pier caps and abutment bridge seats under expansion joints. (All top surfaces should be considered, even those not under joints.) This material should not be used to encapsulate the entire substructure unit as it does not "breathe" and can cause concrete degradation in such instances.

It is advisable to erect beams prior to coating horizontal surfaces. Areas underneath bridge bearings shall not be coated with elastomeric or epoxy sealers. Coating under bridge bearings with penetrating waterproofing sealers is allowed. (9-2-2003)

7.03.12
Mechanically Stabilized Earth (MSE) Wall Requirements (8-20-2009)

Design, construction and other considerations related to permanent and temporary MSE walls shall be according to Load and Resistance Factor Design (LRFD) method as defined by AASHTO and MDOT. (2-26-2018)

A. Wall Design Criteria:

1. The bridge designer and geotechnical engineer are responsible for providing the MSE fabricator with the following information:
 a. Factored bearing resistance at the base of the reinforced soil mass.
 b. Vertical dead and live loads, horizontal loads, and factored bearing pressure applied to the reinforced soil mass from the bridge.

2. The geotechnical engineer is responsible for performing a global stability analysis, estimating the factored bearing pressure, calculating factored bearing resistance, settlement analysis, checking sliding stability and overturning. Global stability must be checked for all stages of construction, including for temporary MSE walls that are utilized to permit part-width construction operations. (2-26-2018)

3. In addition, the engineer shall incorporate all design aspects of the special provision for MSE Retaining Wall System in the design for the MSE walls.
Mechanically Stabilized Earth (MSE) Wall Requirements

B. Wall Configuration:

1. The preference of wall geometry at bridges is as follows:
 a. Straight walls, in line with the abutment wall.
 b. Walls turned back at 45 degrees, or turned back with a large radius.
 c. Walls turned back 46 to 90 degrees.
 d. Acute angles should not be used.

2. The use of complex geometries such as tiered walls or back-to-back walls must be approved by MDOT’s Geotechnical Services Section. For back to back MSE walls the base width, \(W_b \) distance between walls, divided by the height of the taller wall \(H_t \) shall be greater than or equal to 1.1 \(W_b/H_t \geq 1.1 \). (11-28-2011)
7.03.12 (continued)

Mechanically Stabilized Earth (MSE) Wall Requirements

C. Bridge Abutments at MSE Walls

1. Pile supported abutments are required in most cases.
 a. Maximize pile spacing to reduce interference with soil reinforcement.
 b. Incorporate/consider pile bending in design (loose soil vs. stiff soil).
 c. Use pile liner to eliminate downdrag between MSE wall backfill and abutment pile.

2. Spread footings may be allowed if either of the following conditions are met:
 a. The MSE wall is on bedrock.
 b. The bridge is single-span, not constructed part-width, and spread footings are recommended by the Geotechnical Section.

3. Embed footings 1'-6" below the top of coping to allow a minimum of 6" clearance above the top of soil reinforcement. Four foot (4') minimum embedment is decreased due to free draining ability of Backfill, Select material required behind MSE walls.

4. The use of sliding slab abutments (BDG 6.20.03A) and integral/semi-integral abutments with a sleeper slab closer than 20' to the abutment (BDG 6.20.04 series) is allowed with a 20’ concrete approach pavement as detailed on Standard Plan R - 43&45 - Series located on the road approach side of the sleeper slab. (11-28-2011) (2-26-2018)

7.03.12 (continued)

D. Abutment Footing Clearances and Setbacks

1. The edge of pile supported footings shall be located with a minimum clearance of 2 feet from the back face of the MSE facing panels.

2. The edge of spread footings shall be located with a minimum clearance of 5 feet from the back face of the MSE facing panels.

3. The centerline of the front row of piles shall be setback 4.5 feet from the back face of the MSE facing panels.

E. Soil reinforcement length requirements

1. Soil reinforcement length is determined by design, but shall not be less than 0.7 times the wall height (H), or 8 feet whichever is greater.

2. The wall height (H) is to be measured from the proposed finished grade where it intersects the back of the wall face, to the top of the leveling pad.

3. For walls supporting a sloping surcharge, the value H1 shall be substituted for H in the above minimum requirements, where $H1 = H + (\tan \beta \times 0.3H)/(1-0.3\tan \beta)$
 β = angle of backslope

4. For walls with abutments within 0.5 times the wall height, the height (H') of wall shall be measured from finished roadway surface to the top of the leveling pad. The value H’ shall be substituted for H in the above minimum requirements. (12-22-2011)

5. For any section of MSE wall, the soil reinforcement will be the same length from top to bottom.

6. Attaching soil reinforcement to substructure as a means to provide horizontal resistance/anchorage is not allowed.
Mechanically Stabilized Earth (MSE) Wall Requirements

F. Drainage around MSE walls

Consideration shall be given to drainage at design phase to decrease the possibility of issues at MSE wall construction.

1. A 30 mil thick PVC Liner (impervious membrane) is required between the roadbed and the soil reinforcement. It should be located a minimum of 8 inches above the soil reinforcement. The liner should extend 6 feet beyond the ends of the soil reinforcement. Extend liner transversely to 8 inches from slope line or return wall (if present). Place an underdrain 1 foot from the end of the PVC liner running transverse to the road and 1 foot from each end of liner running longitudinally along the roadway. Connect the underdrains and dispense drain 3 feet minimum from any soil reinforcement. (12-19-2016)

2. Foundation underdrains should be used, and located as low as possible to provide positive flow.

3. Curb and gutter at the edge of the roadway with a catch basin should be used to collect the drainage. Locate the catch basin a minimum of 25 feet past the end of the MSE wall reinforcement, if possible. The curb and gutter should continue 10 feet past the catch basin.

4. Use a minimum 20’ concrete approach slabs (to reduce voids under approaches) for structures with MSE walls at the abutments. This includes sliding slab approaches (Bridge Design Guide 6.20.03A). (11-23-2015)

G. Utilities and MSE Walls

1. Avoid utilities through or underneath MSE walls.

2. If utilities cannot be avoided, encase the utility in a protective conduit that extends 10 feet beyond the limits of the Backfill, Select.

3. Pipe culverts through MSE walls should be avoided.

4. Water and sewer lines within 10 feet of an MSE wall should be encased.

H. Leveling Pad Dimensions:

1. Minimum length is 10 ft

2. Maximum height change for each step is 3 ft or ½ panel height
7.03.12 (continued)

Mechanically Stabilized Earth (MSE) Wall Requirements

I. Miscellaneous Requirements

1. Obstructions, such as footing piles, utilities, catch basins, etc. need to be shown on the plan, elevation, and section drawings for the MSE walls.

2. The limits of the Backfill, Select should extend 1 foot beyond the end of the straps at the bottom of the wall, and slope upward at a 45 degree angle.

3. The Plans should clearly identify the MSE wall horizontal alignment, top of coping elevations, proposed ground line in front of wall, limits of concrete surface coating, texturing notes, design height (H), PVC liner, foundation underdrains, areas where cast-in-place coping is required, moment slab/barrier details, utilities, appurtenances, obstructions to the soil reinforcement and notes from BDM Chapter 8.

4. On return walls, keep the barrier inside of the MSE wall, not on top.

5. The water table must be considered by the geotechnical engineer during his/her investigation. Fluctuations in the water table must be accounted for in the investigation and must also be specified on the Plans (i.e. 100 year flood even should be labeled on the plans).
7.03.13

Drilled Shafts (3-26-2018)

Due to relative ease of construction and economy, driven piles are generally preferred for most deep bridge foundations. For unique structures with high vertical or lateral loads, limited footprint, or at sites with deep scour, shallow rock or hardpan, or where foundations are to be built adjacent to vibration sensitive structures, drilled shaft foundations may be appropriate. Drilled shafts are most ideal for sites where short, permanently cased shafts can be socketed into rock or hard pan.

Feasibility of drilled shafts for bridge foundations is subject to the approval of the MDOT Foundation Analysis Engineer. Guidelines used for feasibility evaluation follow:

A. Avoid use of drilled shafts if soil boring logs indicate the presence of gas pockets, artesian/confined aquifers, or nested cobbles/boulders.

B. Shafts up to 50 feet in length, bearing in hardpan or rock, are acceptable. Longer shafts are difficult to case and should be avoided with one possible exception; that being sites where deep lacustrine clay overlies hardpan or rock.

C. Due to increased construction risk, avoid uncased shafts in the drift. Permanent casing, sealed into the competent strata below the drift, is the preferred construction scenario. Temporary cased or uncased designs will be evaluated based on the merits of the site and typical contractor tooling.

D. In the absence of a site specific load test program, shafts must be sized such that the full factored geotechnical resistance, is derived from either shaft resistance or end resistance.

1. Friction shafts must develop the full factored vertical side resistance in hardpan and/or rock.

2. End-bearing shafts must be sized such that the full factored vertical resistance is derived from end-bearing on rock or hard pan.

E. Belled drilled shafts are prohibited.

F. Drilled shafts in gas bearing formations are prohibited.

Contact MDOT's Geotechnical Services Section with questions.
7.04

REINFORCEMENT

7.04.01

Steel Reinforcement (11-28-2011)

A. Epoxy-Coated Reinforcement (5-6-99)

All reinforcement above footings shall be epoxy coated. This includes, but is not limited to, abutment walls, return walls, curtainwalls, pier columns, pier crash walls and backwalls.

B. Steel Reinforcement at Joints

Steel reinforcement is to extend through construction joints and stop at expansion joints.

C. Allowable Length

Generally, bar lengths should be limited to 50'-0" but may be increased to 60'-0" to avoid excessive lapping. These lengths are based on transportation charges.

Normally, #3 reinforcement is not available in lengths greater than 40'-0". Therefore, unless unusual conditions warrant an exception, the maximum length of #3 bars shown on the plans should be 40'-0". (8-6-92)

D. Fabricating Tolerance

The permissible tolerance for cutting reinforcing bars to length is 1". The bars should be made long enough to ensure that the minimum lap and proper edge distance is provided in case the bars are cut 1" short of the plan dimension.

The permissible tolerance for fabricating the "B" bars in pier columns is 1". The bars should be detailed with a gap between the bottom of bars and the top of footing in case the bars are fabricated 1" longer than shown on the plans.

7.04.01 (continued)

E. Wall or Column Vertical Steel Reinforcement (5-6-99)

In order to facilitate placing and supporting long reinforcing bars that are anchored in footings, splices in vertical reinforcement should be provided. Short dowels can be used for wall front reinforcement, with laps just above the footings.

Laps for reinforcement in back of walls or in columns should be at least 4'-0" or 5'-0" above top of footing so as not to be in the area of maximum stress. Laps should not normally be provided for bars that do not extend to full height of wall or pour.

Where walls or columns are of such height as to require horizontal construction joints, bar laps should be provided above these joints.

F. Bar Size Substitutions

When using Grade 60 reinforcing, the AASHTO specification for distribution of flexural reinforcement may require using small bars at close spacing. Therefore, it may not always be permissible to make a total area substitution with fewer larger bars.

G. Minimum Bar Size

To avoid handling damage, the minimum bar size shall be #4. An exception to this is the temperature steel in decks. These bars are to be #3.
Stainless Steel Reinforcement (11-28-2011)

A. Criteria For Use

As an alternative to epoxy coated reinforcement, stainless-clad and solid stainless steel reinforcement should be selectively used in bridge deck construction. Designers will need to examine whether the additional expenditure is warranted for enhanced durability of the structure. The designer should consider use of stainless-clad and solid stainless reinforcement under one or more of the following circumstances.

1. The additional expenditure for stainless-clad and solid stainless reinforcement, including cost savings from reduced cover requirements, should be no more than eight percent of the programmed structure cost.

2. For structures on trunkline roads where future repair and maintenance would be very disruptive to traffic and where mobility analysis defines the project as significant and mitigation measures to minimize travel delay are needed (See Work Zone Safety and Mobility Policy).

3. Over navigable waterways or protected wetlands sensitive to environmental impact from construction activity.

4. Where the deck cross section is less than 9 inches, due to local geometric restrictions or in widening projects where the dead load is limited to the capacity of the existing substructure.

5. Bridges located over high volume railway lines where access and right of way restrictions exist.

When using stainless-clad or solid stainless steel reinforcement for new bridge deck construction, the designer should consider using empirical deck design when that type of design reduces the amount of steel reinforcement.

Combine stainless-clad reinforcement with solid stainless reinforcement to optimize the material costs.

B. Cost

In estimating the cost of stainless-clad and solid stainless steel reinforcement, current prices should be obtained from suppliers. Stainless-clad and solid stainless steel reinforcement costs are more volatile and variable than for carbon steel and are sensitive to bar length, diameter and the waste when cutting from relatively short stock bars. Prices may vary significantly between suppliers.

C. Detailing and Availability

Stainless-clad and solid stainless steel reinforcement is similar to normal carbon steel reinforcement in the design, detailing and construction process. Use stainless-clad and solid stainless steel reinforcement in both reinforcement mats in the bridge deck, and in other locations as warranted. Dissimilar metals contact, whether with epoxy coated reinforcement, uncoated reinforcement, or galvanized steel, is not considered detrimental when embedded in concrete. The standard cover requirement of three inches can be reduced to two inches.

Stainless-clad reinforcement is available in standard U.S. customary sizes of #5 or greater, with maximum lengths of 40'-0", and available in Grade 60. Solid stainless steel reinforcement is available in all standard sizes and lengths, and available in both Grade 60 and Grade 75.
7.05

PEDESTRIAN FENCING (8-6-92)

7.05.01

Electrical Grounding System

Pedestrian bridges and pedestrian screening shall be grounded as specified in the standard specifications. Details described in the specifications need not be shown on the plans.

7.05.02

Fence Fabric

Mesh size opening shall be 2" unless 1" opening is approved by the Traffic & Safety Division. Mesh size opening of 1" is preferred on pedestrian fencing for structures in the Detroit metropolitan area and it should be noted on the plans. For the present, 2" mesh is preferred elsewhere in the state. For limits of the metropolitan area see Appendix 12.01.01. (5-6-99)

7.05.03

Fence Posts

Posts for bridge fencing should be 2½" (2.875" O.D.) steel pipe. The steel type and maximum post spacing should be as shown below.

<table>
<thead>
<tr>
<th>Maximum Unsupported Post Height</th>
<th>Mesh Size</th>
<th>Steel Type (ASTM)</th>
<th>Maximum Post Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>9'-0"</td>
<td>1"</td>
<td>F 1043</td>
<td>8'-6"</td>
</tr>
<tr>
<td>9'-0"</td>
<td>2"</td>
<td>F 1043</td>
<td>10'-0"</td>
</tr>
<tr>
<td>7'-0"</td>
<td>1"</td>
<td>F1083</td>
<td>8'-6"</td>
</tr>
<tr>
<td>7'-0"</td>
<td>2"</td>
<td>F1083</td>
<td>10'-0"</td>
</tr>
</tbody>
</table>

(10-24-2001)
7.06

RECONSTRUCTION PROJECTS

Include saw cut depth dimensions when removing portions of abutments, piers and columns on the plans. (8-20-2009)

7.06.01

Placement of Temporary Barrier
(9-21-2015)

A. 26” or More Laterally Available

For widening jobs or part-width construction of a new bridge, when 26” or more laterally is available between the toe of a temporary barrier on the construction side and a precipitous drop-off, place standard temporary concrete barrier or temporary steel barrier meeting MDOT specifications near the drop-off. No special hardware or procedures are necessary. See Standard Plan R-126-Series.

B. Less Than 26” Laterally Available

When there is less than 26” laterally between the toe of the barrier on the construction side and the precipitous drop-off, place an appropriate limited deflection temporary barrier detail meeting the requirements of Standard Plan R-53-Series, or an approved alternative. Refer to Standard Plan R-126-Series for placement and to Standard Plan R-53-Series for additional information regarding limited deflection temporary barrier details.

For more definitive write-up and discussion of detailed placement options see Section 7.01.70 of Road Design Manual.
Concrete Anchors (5-6-99)

A. Expansion Anchored Bolts

In addition to field testing, we will ensure sound anchorage by reducing the design loads. The values to be used will vary with the application as shown below:

<table>
<thead>
<tr>
<th>Application</th>
<th>Approx. Safety Factor</th>
<th>⅜”</th>
<th>½”</th>
<th>⅝”</th>
<th>⅞”</th>
<th>⅛”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncritical Design Loads (Including noncritical, static or shock loads)</td>
<td>4</td>
<td>875</td>
<td>1,620</td>
<td>2,565</td>
<td>3,775</td>
<td>5,240</td>
</tr>
<tr>
<td>Vibratory Loads (e.g., Sign Supports)</td>
<td>12</td>
<td>290</td>
<td>540</td>
<td>855</td>
<td>1,260</td>
<td>1,755</td>
</tr>
</tbody>
</table>

Design details should always call for two or more anchors for redundancy.

B. Bonded Anchors (Adhesive and Grout Anchors)

All bonded anchors shall be detailed for embedment depth on the contract plans. For A307 bolts the embedment depth shall be taken as “9d” (9 times the nominal bolt diameter). For Grade 60(ksi) reinforcing steel the embedment depth shall be taken as “12d” (12 times the bar diameter). (5-1-2000)

In addition to field testing, we will ensure sound anchorage by reducing the design loads. For all applications a safety factor of 4 should be applied to 125% of the threaded rod/reinforcement yield strength to obtain the allowable design tensile load on the anchor. The allowable tensile load shall be computed per:

\[
\text{Allowable tensile load} = \frac{(125\% \ f_y \ A_T)}{4}
\]

\[
A_T = \text{tensile stress area} = \text{net section through threads (for reinforcing steel use nominal area)}
\]

(1-29-2018)

C. Allowable Shear for Post Installed Concrete Anchors (Expansion and Bonded Anchors) (per AASHTO Table 10.32.3A)

\[
\text{Allowable Shear} = 0.30 \ f_y \ A_T
\]

\[
A_T = \text{tensile stress area}
\]

(5-1-2000)
7.06.03

Substructure Protection

Where we are reconstructing an existing substructure unit; i.e., capping or extending it, and there is a transverse joint in the superstructure directly above, the entire top existing and proposed, and all other existing faces of the unit shall be coated with penetrating water repellent treatment or another concrete surface sealer. See Section 7.03.11.

7.06.04

Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

For additional information on temporary supports see Subsection 7.01.10.

A. Construction Methods

The choice of method can best be made during an on-site inspection, preferably the Scope Verification or Plan Review, where Region/TSC personnel can offer opinions. (5-6-99)

1. Temporary Support From Below Using Column and Footing Arrangement
 a. Does not require lane closure above; i.e., traffic over work area.
 b. May require lane closure below depending on location of suspender.

2. Temporary Support From Above Using Multiple or Single Beam Suspension Arrangement
 a. Requires lane closure above.
 b. May require lane closure below because of underclearance restrictions.
 c. Joint replacement at expansion end and removal of portions of deck at fixed end will probably be required for multiple beam suspension.

7.06.04 (continued)

B. Preliminary Investigation for Temporary Support From Below

1. Request Borings and Factored Nominal Soil Pressures from Geotechnical Services Section. (2-26-2018)
 a. Consideration should be given to possible differential settlement below temporary support footing.
 b. Borings are not required if footing is placed on paved surface. Assume a bearing pressure of 17 psi. (5-6-99)

2. Determine Utility Locations

Underground utilities may be damaged by settlement of temporary support footing pressure.

3. Determine Obstructions of Temporary Support Footing

Consider pier location and skew.

4. Read Current Specifications for This Type of Work Prior to Starting Design.

C. Design of Temporary Support From Below (see Appendix 7.06.04 for nomenclature):

1. Loading
 a. Use 1.25 (DL+LL+I) for column, column base plate, and jack base plate design.
 b. Use 1.0 (DL+LL+I) for channel shim and jack bearing plate design.
 c. Use 1.25 (DL+LL) for footing design (timber and concrete).
 d. Use 1.25 (DL+LL+I) for hydraulic jack capacity.
Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

2. Materials (5-6-99)
 a. Use AASHTO M270 steel, $f_y = 36,000$ psi. (Do not mix steel types used for temporary support.)
 b. Use Concrete Grade S2, $f'_c = 3000$ psi.
 c. Use Structural Grade Timber, $F_b = 1200$ psi. F_v (horiz.) = 100 psi.

3. Column Design
 a. Size for axial load plus bending in both perpendicular directions.
 b. Use $0.1 \times$ flange width and $0.1 \times$ beam depth rounded up to nearest $\frac{1}{8}$" for assumed eccentricity.
 c. Use pinned-pinned end condition (restraint at base plate small). Effective length factor, $K = 1.0$.
 d. Check lateral loading on column from thermal movement of bridge. Use 75°F temperature variation. Combine thermal load with (DL+LL+I).

4. Column Base Plate Design
 a. Avoid use of stiffeners (high welding cost).
 b. Size for axial load plus bending. Use eccentricity assumed in column design.
 c. Do not attach base plate to footing.
 d. Use $F_b = 0.75 F_y$.

5. Jack Base Plate Design
 a. Design as plate fixed on three sides, free on one side. (See Young, W.C., Roark’s Formulas for Stress and Strain, pg. 469. Available in MDOT Library. See Appendix 7.06.04 for excerpt.) (5-6-99)
 b. Use equivalent rectangular uniform load from jack bearing area.
 c. For uniform load $2/3$ of plate width, use $f_b = 60 \text{ q/l}^2$ (see item a above, $q = \text{load per unit area in psi and } t = \text{plate thickness in inches}$).
 d. For uniform load $1/3$ of plate width, use $f_b = 17 \text{ q/l}^2$ (see item a above, $q = \text{load per unit area}$).
 e. Linear interpolate for uniform load between $1/3$ and $2/3$ of plate width.
 f. Use $F_b = 0.75 F_y$ in psi.
 g. Weld to column.

6. Channel Shims Design (two per support)
 a. Size for axial load plus bending perpendicular to web.
 b. Use $0.1 \times$ flange width rounded up to nearest $\frac{1}{8}$" for assumed eccentricity.
 c. Weld to jack base plate.
7.06.04 (continued)

Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

7. Jack Bearing Plate Design
 a. Size for bending about centerline existing girder or beam web.
 b. Use load on channel shims for bending calculations.
 c. Use $F_b = 0.75 F_y$.

8. Hydraulic Jack Capacity
 a. Specify minimum jack capacity required (based on axial load only).

9. Timber Footing Design
 a. Use double mat (minimum) with square or rectangular timbers.
 b. Size for axial load plus bending. Use eccentricity assumed in column design. Use allowable soil pressure from Geotechnical Services Section. On a paved surface assume a bearing pressure of 17 psi. (5-6-99) (2-26-2018)
 c. Check flexure and horizontal shear. Allow 25 percent overstress to account for short duration of loading.
 d. Column base plate full width across top mat.
 e. Top mat full width across bottom mat.
 f. Specify channels lag-bolted to timbers across top of both mats, each end (lag-bolt to each timber).

10. Concrete Footing Design
 a. Use bottom mat steel reinforcement only, both directions.
 b. Size for axial load plus bending. Use eccentricity assumed in column design. Use allowable soil pressure from Geotechnical Services Section. (2-26-2018)
 c. Check flexure, beam (one way) shear and slab (punching) shear.
 d. Specify concrete to be stenciled with "top" on side opposite steel reinforcement. Stencil "bottom" as required.

11. Footing Placed on Soil
 a. Specify compaction of original ground to not less than 95 percent of its maximum unit weight to a depth of 9" and to 1'-6" outside footing outline.
 b. Specify Structure Embankment (CIP), if required, to 1'-6" outside footing outline.
 c. Specify level under footing.
 d. Specify Granular Material Class III, compacted to not less than 95 percent of its maximum unit weight, to 1'-6" outside footing outline for leveling.
 e. Specify 1V:1H slope down to natural ground for all required fill material.
7.06.04 (continued)

Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

12. Footing Placed on Pavement or Paved Shoulder
 a. Specify level under footing.
 b. Specify 21AA aggregate, HMA cold patch material, or approved equal to 1'-6" outside footing outline for leveling.
 c. Specify 1V:1H slope down to pavement for required fill material.

13. Placement of Temporary Support
 a. Centerline temporary support under area where pin plate exists.
 b. Centerline temporary support under stiffener, if possible.
 c. Show location on plans.

 a. Send temporary support shop drawings to MDOT Structural Fabrication Unit for review.
 b. Check all weld sizes and member sizes against plan requirements.

15. Maintaining Traffic
 a. Temporary supports must be completely shielded from traffic.
 b. Place temporary concrete barrier in area of temporary support in all cases (both sides if narrow median).

7.06.04 (continued)

16. Hanger Assembly Removal Sequence
 a. Minimize risks in case of support failure or excessive settlement.
 b. Adjacent beam suspender operational.
 c. Opposite end suspender operational.

D. Checks on Existing Girder or Beam, Temporary Support From Below

1. Loads: Use design axial load of column for checks.

2. Web Checks
 a. Web buckling - distribute load on 45° from edge of jack bearing plate (effective length factor, K = 1.0).
 b. Web crippling.
 c. Specify bolted stiffener, if required, bearing against bottom flange.

3. Diaphragm Clearance
 a. On sharply skewed bridges, determine if diaphragm needs to be cut to allow placement of new pin (note on plans if cutting is required).
 b. Determine if repair of cut diaphragm is required. Use field bolted cover plate if repair is necessary.
Hanger Assembly Replacement and Temporary Support Guidelines for Redundant Bridges

E. Design of Temporary Support From Above

1. Consideration should be given to providing redundancy in temporary support. Avoid nonredundant schemes if possible.

2. Multiple Beam Support Loading
 Use 1.25 DL + 2.0 (LL+I) maximum.

3. Single Beam Support Loading
 Use 1.25 (DL+LL+I).

4. Materials (5-6-99)
 Use AASHTO M270 steel, F_y = 36,000 psi.
 (Do not mix steel types used for temporary support if the pieces are to be joined by welding.)

5. Hanger Assembly Removal Sequence
 a. Minimize risks in case of temporary support failure.
 b. Adjacent beam suspender operational.
 c. Opposite end suspender operational.
 d. Maintaining traffic may demand deviation from items b and c.

F. Checks on Existing Beam or Girder, Temporary Support From Above

1. See Article D for required checks to be made.

G. Hanger Assembly Plan Dimensions and Field Measurements

1. Dimensions on Plans
 a. Pins - give diameter and length.
 b. Link plate - give length, width, thickness and C-C pins.
 c. Other details and dimensions shown on Bridge Design Guides 8.14.02, 8.15.01 and 8.15.01A. Specify stainless steel washers and cotterpins.
 d. If existing suspender must be shown on the detail sheets, this detail shall be shown accurately.

2. Field Measurements
 a. If field measurements differ from plan dimensions, correct shop drawings to reflect actual dimensions.
 b. Use average C-C pin distance for specific hanger locations where one side is different from the other.
 c. Increase pin length to account for girder or beam offset, if required. Select longest length required and use for all pins.

3. Shop Drawing Review (3-26-2018)
 a. Send suspender assembly shop drawings to MDOT Structural Fabrication Unit, for review.
7.07 APPROACH ITEMS

7.07.01 Guardrail

All new guardrail anchorages to bridges will utilize three beam guardrail according to Standard Plan R-67-Series and will be anchored directly to the bridge railing or pier filler walls. (5-6-99)

Where there are independent backwalls, that is, where there will be thermal deck movement at the abutments, the movement will be accommodated by the slots in the expansion section of the guardrail anchorage.

7.07.02 Curb and Gutter for Rural Bridges

The types and lengths of bridge approach curb and gutters (including valley gutter, where required) shall be determined by the bridge designer and shown on the General Plan of Structure Sheet.

A. Bridge approach curb and gutter will be according to Standard Plan R-32-Series.

1. Bridge Approach Curb and Gutter, Detail 1 will be used on the high end of a bridge where the bridge drains away from the curb and gutter.

2. Bridge Approach Curb and Gutter, Detail 1A will be used only on departing end of bridges when guardrail is not needed. (5-6-99)

3. Bridge Approach Curb and Gutter, Detail 2 and 2A will be used on the low ends of a bridge where the paved area draining to the curb and gutter is less than 2,500 SFT and the fill height is less than 10'-0". Where the drainage area exceeds 2,500 SFT, use Detail 3. (5-6-99)

4. Bridge Approach Curb and Gutter, Detail 3 and 3A will be used on the low ends of a bridge where the fill height is over 10'-0". One downspout header shall be provided for each 3500 SFT of paved drainage area or fraction thereof. (5-6-99)

B. If the bridge railing is other than Bridge Barrier Railing, the curb and gutter shall be designated as "modified" and shall be transitioned to match the bridge curb.

C. Payment for all types of bridge approach curb and gutter will be included in the pay item “Curb and Gutter, Bridge Approach”. The quantities shall be included in the Road Plans when bridge and road work is "packaged" together. (5-6-99)

7.07.03 Bridge Approach Pavement

To eliminate approach pavement settlement, a concrete approach section will be used for all new bridges and bridge replacements, deck and superstructure replacement projects and concrete overlays. For hot mix asphalt (HMA) deck overlays, a concrete approach section is not necessary. The details of the approach slab shall be as specified on Standard Plan R-45-Series except on existing structures, where the grade will not be raised; the length of the approach slab shall match the existing slab joint. (9-2-2003)

Approach pavements for integral and semi-integral abutment designs shall be according to Bridge Design Guide 6.20.04 Series.
7.08 (5-6-99)

UTILITY ITEMS

7.08.01

General (8-20-2009)

For additional information regarding utilities see:

Chapter 9 of the Road Design Manual

MDOT Real Estate Division’s Utility Coordination Manual (Real Estate UCM)

7.08.02

Plan Distribution Process for Utility Coordination (8-20-2009)

A. Request for Utility Information

General

This process outlines the responsibilities and procedures for gathering utility information early in a project’s design phase. Gathering utility information typically occurs after the project scope verification has been completed. For this procedure, utility is defined as any type of private, public, municipal, or county drain commission facility that is within or near the limits of the proposed construction project.

Capital preventive maintenance and pavement parking projects are examples of projects that do not require plan distribution to utilities. The project must not include any guardrail work or any work beyond the outside edge of the shoulder, or require any excavation, trenching, boring, etc., into the aggregate base or subbase material. The Project Manager (PM) shall evaluate each project and use discretion on whether plans need to be distributed for utility coordination.

Subsurface Utility Engineering (SUE) projects that use a consultant to provide the underground utility information may not need to follow this entire procedure. The PM may need to coordinate this request for utility information with the SUE vendor.

7.08.02 (continued)

Procedure

Project Manager

1. Contact the TSC Utility Coordinator to request Letter Requesting Utility Information at Base Plan Stage, (MDOT Form 2480). Provide the following information:

 • Project Location
 • Scope of Work
 • Control Section(s)
 • Job Number(s)
 • Proposed Plan Completion Date
 • Consultant Information, if applicable

 Note: When project information exceeds the allowed space on Form 2480 an additional document shall be supplied by the PM detailing this information. The applicable field(s) on Form 2480 shall state “see attached sheet” when this occurs

TSC Utility Coordinator

2. Receive request for Form 2480 letters from the PM.

3. Generate Form 2480 letters, for all applicable utilities within the project limits, using the Utility Relocation Tracking System (URTS).

 Note: Form 2480 shall include a “Please respond by” date. It is recommended the “Please respond by” date be no earlier than 30 days after the date of the letter.

4. Generate the standard Cover Letter using URTS. The Cover Letter contains all applicable utility names, contacts, addresses and the number of plan sets requested.

5. Provide the Cover Letter and all Form 2480 letters to the PM within 7 working days of receiving the request for Form 2480 letters.
7.08.02 (continued)

A. Request for Utility Information

Procedure

Project Manager

6. Receive the Cover Letter and all Form 2480 letters from the TSC Utility Coordinator.

7. Review and sign Form 2480 letters.

8. Send Form 2480 letters and plans to the utilities with courtesy copies to TSC Utility Coordinator:

Note: Old plans, Right-of-Way maps, or MDOT Construction Base Plans are acceptable for sending to the utilities. The plans must provide the project’s location and limits of work. Vicinity maps may be included for general information, but shall not be used as the sole project plans as they provide inadequate information for the utilities to plot their facilities. This includes log jobs that may affect a utility.

7.08.02 (continued)

TSC Utility Coordinator

9. Receive a courtesy copy of all signed Form 2480 letters and plans from the PM.

10. Receive Request for Utility Information – Return Form, (Form 2480) and plans from utilities.

11. Evaluate returned Form 2480 and plans from the utilities.

Note: If it is determined that the information received from a utility is not useful, the TSC Utility Coordinator shall contact the utility for additional information.

12. Forward returned Form 2480 and plans to the PM.

13. Follow-up with non-responsive utilities.

Notes: One method used to follow-up with non-responsive utilities is to send a second request for utility information letter. See the Request for Utility Information Follow-Up Example.

14. Contact PM with the status of utility responses within two weeks of the “Please respond by” date on Form 2480.

Project Manager

15. Receive returned Form 2480 and plans from the TSC Utility Coordinator.

16. Plot all utility facilities on the MDOT Construction Preliminary Plans.

17. Follow Preliminary Plan Distribution (MDOT Forms 2481 & 2482), (Real Estate UCM Procedure 1802.02) for sending preliminary plans to utilities.
7.08.02 (continued)

B. Preliminary Plan Distribution

General

Preliminary plan distribution to utilities shall be completed whether or not utility conflicts have been identified. It is important to provide preliminary plans because it allows the utilities an opportunity to review the proposed project, to ensure facilities are plotted accurately, and provides notification to relocate facilities in conflict.

Distribution of preliminary plans takes place after Request for Utility Information (Form 2480) (Real Estate UCM Procedure 1802.01), is complete. It typically occurs during the design process after the Plan Review Meeting and before the Omissions and Errors Check (OEC) Meeting.

The preferred method for preliminary plan distribution is to send separate letters to public/private and municipal utilities that address the following:

- The Letter to Public/Private Utilities at Preliminary Plan Stage, (Form 2481) includes the following:
 - References Highway Obstructions and Encroachments; Use of Highway by Public Utilities, Public Act (PA) 368 of 1925
 - Gives legal notification to relocate
 - Authorizes preliminary engineering

- The Letter to Municipal Utilities at Preliminary Plan Stage, (Form 2482) is used because MDOT may be responsible for the relocation costs associated with municipal utility relocations within their corporate limits. This may require MDOT to complete the following:
 - Perform the relocation design
 - Include relocation work in the project plans
 - Formalize an agreement

If Forms 2481 and 2482 are not sent to the utilities, the Utility Coordination Meeting Invitation letter must cite PA 368, authorize preliminary engineering, provide relocation reimbursement information, and be accompanied by preliminary plans. See Utility Coordination Meeting, (Real Estate UCM Procedure 1802.05)

Procedure

TSC Utility Coordinator

1. Ensure all utility facilities have been plotted on the preliminary plans in accordance with Real Estate UCM Procedure 1802.01.

2. Determine if the project has potential utility conflicts. This may include discussion with the Project Manager.

3. Send preliminary plans to the utilities with one of the following:
 - Utility Coordination Meeting Invitation letter citing PA 368, authorizing preliminary engineering, and providing relocation reimbursement information. See Utility Coordination Meeting Invitation with PA 368 Info Example, (Real Estate UCM Exhibit 1802.05a).
 - Forms 2481 and/or 2482

 Note: If a Utility Coordination Meeting is deemed necessary at a later date the Utility Coordination Meeting Invitation letter will not require citing PA 368, authorizing preliminary engineering, and providing relocation reimbursement information. See Utility Coordination Meeting Invitation, (Real Estate UCM Exhibit 1802.05b).

4. Conduct the Utility Coordination Meeting, if necessary. See Real Estate UCM Procedure 1802.05.

 Note: It is desirable to schedule the utility coordination meeting after the Plan Review Meeting and before the Omissions and Errors Check (OEC) Meeting.
7.08.03 Including Utility Work in Contracts
(8-20-2009)

The Utilities Coordination & Permits Section of Real Estate established a procedure for billing utility companies for expenses incurred as part of a construction project. The Designer should be aware of this procedure as it includes information on which items may be reimbursable.

A. General

Utility companies occupying trunkline right-of-way by virtue of Act 368, P.A. 1925, and the Michigan Department of Transportation's Utility Accommodation Policy are subject to relocating their facilities at their expense if a conflict exists due to a Department project. If during the preliminary design and utility coordination meetings it is determined that the Department can make adjustments to its plans which would allow either the utility company's facilities to remain in place or reduce their relocation cost, efforts should be made to do so if the overall Department project is not affected. If the utility company is located in MDOT right-of-way by permit, costs incurred by the Department to revise its plans in order to accommodate a utility company are billable to that utility company. Such adjustments will require coordination and concurrence with the Utilities Coordination and Permits Section of Real Estate.

Utility companies with facilities that have manholes within the roadway are responsible for adjusting these manholes if required by the project. Most utility companies will adjust their own manholes during the course of the project which will require a Notice to Bidders Utility Coordination in the proposal. However, provisions may be made at the utility company's request to include adjustment of their manholes in the work items of the project. Including manhole adjustments or any other utility work or project re-design costs, will be charged to the utility as per the procedure outlined in Section 7.08.02 B.

7.08.03 (continued)

Municipal utilities shall not be charged any relocation costs due to project conflicts within their corporate limits except as provided for in the water main relocation policy. (See Road Design Manual Section 9.02.01B) If they are operating outside their corporate limits, relocation costs would be at their expense and any chargeable project expenses are to be administered through the Governmental Coordination Engineer.

The Governmental Coordination Engineer is to be contacted if a project involves relocation of municipal utilities or chargeable expenses are incurred and the municipal utility is operating outside the corporate limits of the municipality.

An agreement shall be required in the event chargeable expenses are involved.
7.08.03 (continued)

B. Procedures

This procedure shall be used when work on behalf of a non-municipal utility is to be performed by MDOT contractor during construction. Upon a mutual agreement between a utility and MDOT, work items are incorporated in MDOT road and/or bridge construction projects and charged to the utility.

Note: Municipal utility work shall be coordinated with the MDOT Design, Municipal Utility Section. See Municipal Utility Relocation, (Real Estate UCM Procedure 1802.03).

Example Work Items

Example work items that may be chargeable to a utility through this process include adjustment of utility manholes, existing facility removals, supporting utility poles, and utility bridge attachments.

Project Manager / TSC Utility Coordinator

1. Convene a meeting with the TSC Utility Coordinator, Project Manager (PM), and each utility to determine whether any work on behalf of the utility shall be included in the project. The following utility coordination issues shall be discussed:

 • Proposed construction schedule

 • Type of work required

 • Plan Completion Date

2. Ensure the agreed upon utility work is included in the plans and appropriate contract documents.

3. Complete Utility Charge Estimate, (Form 223). See Utility Charge Estimate, (Form 223) Sample, (Real Estate UCM Exhibit 1802.06a).

4. Send Form 223 to TSC Utility Coordinator if the total estimated cost of the utility work is greater than $1,000 and less than $100,000. The appropriate plan sheets that indicate or illustrate that the utility work has been included in the project shall also be sent, if available.

Note: When the total estimated cost of the utility work is less then $1,000, MDOT shall not charge the utility. MDOT shall incorporate the utility work into the project at no cost to the utility. If a pay item(s) is not federally participating, it shall be funded 100% by MDOT.

Note: For costs greater than $100,000, an individual agreement shall be required. The PM shall contact MDOT Design’s Agreements Section to initiate this request.
7.08.03 (continued)

B. Procedures

TSC Utility Coordinator

5. Receive Form 223 and plan sheets from the PM.

6. Schedule and conduct a meeting with utility to review plans prior to acceptance, if necessary.

7. Prepare the Utility Approval Letter. See Utility Charge Estimate, (Form 223) Utility Approval Letter Example, (Real Estate UCM Exhibit 1802.06c).

8. Send Form 223 and the Utility Approval Letter to the utility for review and approval. Courtesy copies shall be sent to the Central Office Utility Coordination and Permits Section.

9. Receive signed copy of Form 223 from the utility.

10. Notify the utility to perform any necessary relocation work prior to construction if either:

 • Utility work is not included in the MDOT contract

 • Utility does not approve the estimated

 Note: If relocation is not possible prior to construction and the utility chooses to do the work themselves, complete a Notice to Bidders – Utility Coordination document for the project.

11. Send copy of signed Form 223 to the PM and Central Office Utility Coordination and Permits Section.

7.08.03 (continued)

Central Office Utility Coordination and Permits

12. Receive copy of signed Form 223 from the TSC Utility Coordinator.

13. Establish a file and add Form 223 information to the statewide tracking spreadsheet.

14. Send copy of signed Form 223 to MDOT Financial Operations, Project Accounting Unit.

MDOT Financial Operations, Project Accounting Unit

15. Receive copy of approved Form 223 from Central Office Utility Coordination and Permits Section.

16. Input estimate information into MDOT Financial Operations, Project Accounting Unit (PAU) Utility Database.
B. Procedures

Project Manager

17. Receive copy of approved Form 0223 or notification of utility denial from TSC Utility Coordinator.

18. Develop a special provision that covers all work for the utility. See Special Provision for Utility Coordination and Utility Work Sample, (Real Estate UCM Exhibit 1802.06b). The pay item shall be established as a lump sum pay item, with an established maximum based on the line titled as "Maximum Contract Bid Amount (125% of Subtotal)" from Form 0223.

Note: The maximum contract bid amount is not the "Total Maximum Charge to the Utility."

Note: Lump sum pay item(s) for utility work are the preferred method. However, per unit pay item(s) can be considered for items of work that are not suitable as lump sum.

19. Establish a separate non-federally participating category in AP Preconstruction for each utility. (3-26-2018)

20. Ensure JobNet reflects the utility funding, (3-26-2018)

MDOT Financial Operations, Project Accounting Unit

21. Run report from AP Preconstruction monthly to determine what projects have been awarded. (3-26-2018)

22. Review awarded contracts to:
 - Verify signed copy of Form 0223 has been received
 - Ensure amounts are comparable to approved Form 0223
 - Ensure utility funding is established in JobNet (3-26-2018)

23. Update the PAU Utility Database monthly with current cost-to-date information on all projects that have been awarded.

24. Invoice utility throughout duration of construction for contract cost-to-date plus prorated actual preliminary (PE) and construction engineering (CE) on approved utility pay items.

25. Send courtesy copy of utility invoice to Central Office Utility Coordination and Permits Section.

Central Office Utility Coordination and Permits

27. File the utility invoice with the utility signed Form 0223.

28. Contact MDOT Financial Operations, Project Accounting Unit to discuss:
 - Paid and unpaid invoices
 - Contract Modifications for utility pay items
 - Projects that do not have utility approved Form 0223
HOT ROLLED SHEET PILING SECTION MODULI

<table>
<thead>
<tr>
<th>Sheet Pile Designation</th>
<th>Section Modulus in3/ft.</th>
<th>Nominal</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ-22</td>
<td>18.1</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>AZ 12</td>
<td>22.3</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>PZC-12</td>
<td>22.4</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>AZ 12-770</td>
<td>23.2</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td>PLZ-23</td>
<td>30.2</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>AZ 13-770</td>
<td>24.2</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>AZ 13</td>
<td>24.2</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>PZC-13</td>
<td>24.2</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>AZ 14-770</td>
<td>25.2</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>AZ 14</td>
<td>26.0</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>PLZ-25</td>
<td>32.8</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>PZC-14</td>
<td>30.2</td>
<td>25.5</td>
<td></td>
</tr>
<tr>
<td>PZ-27</td>
<td>31.0</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>AZ 17</td>
<td>31.0</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>AZ 17-700</td>
<td>32.2</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>AZ 18-700</td>
<td>33.5</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>AZ 18</td>
<td>33.5</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>PZC-18</td>
<td>33.5</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>AZ 19-700</td>
<td>34.8</td>
<td>30.4</td>
<td></td>
</tr>
<tr>
<td>AZ 19</td>
<td>36.1</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>PZC-19</td>
<td>36.1</td>
<td>32.1</td>
<td></td>
</tr>
<tr>
<td>AZ 24-700</td>
<td>45.2</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>AZ 25</td>
<td>45.7</td>
<td>40.7</td>
<td></td>
</tr>
<tr>
<td>PZC-25</td>
<td>45.7</td>
<td>41.1</td>
<td></td>
</tr>
<tr>
<td>AZ 26</td>
<td>48.4</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td>AZ 26-700</td>
<td>48.4</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>PZ-35</td>
<td>48.5</td>
<td>43.6</td>
<td></td>
</tr>
<tr>
<td>PZC-26</td>
<td>48.4</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>AZ 28</td>
<td>51.2</td>
<td>46.4</td>
<td></td>
</tr>
<tr>
<td>AZ 28-700</td>
<td>51.3</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td>PZC-28</td>
<td>51.2</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>PZ-40</td>
<td>60.7</td>
<td>54.6</td>
<td></td>
</tr>
<tr>
<td>PZC-34</td>
<td>63.8</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>PZC-36</td>
<td>67.0</td>
<td>61.6</td>
<td></td>
</tr>
<tr>
<td>AZ 37-700</td>
<td>68.9</td>
<td>61.7</td>
<td></td>
</tr>
<tr>
<td>PZC 37-CP</td>
<td>68.8</td>
<td>64.1</td>
<td></td>
</tr>
<tr>
<td>PZC-38</td>
<td>70.6</td>
<td>65.3</td>
<td></td>
</tr>
<tr>
<td>AZ 39-700</td>
<td>75.5</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>PZC 39-CP</td>
<td>73.0</td>
<td>68.3</td>
<td></td>
</tr>
<tr>
<td>AZ 41-700</td>
<td>76.2</td>
<td>69.4</td>
<td></td>
</tr>
<tr>
<td>PZC 41-CP</td>
<td>75.8</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td>AZ 46</td>
<td>85.5</td>
<td>77.7</td>
<td></td>
</tr>
<tr>
<td>AZ 48</td>
<td>89.3</td>
<td>81.7</td>
<td></td>
</tr>
<tr>
<td>AZ 50</td>
<td>93.3</td>
<td>85.9</td>
<td></td>
</tr>
</tbody>
</table>

COLD ROLLED SHEET PILING SECTION MODULI

<table>
<thead>
<tr>
<th>Sheet Pile Designation</th>
<th>Section Modulus in3/ft.</th>
<th>Nominal</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ-12</td>
<td>8.6</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>SZ-14</td>
<td>9.8</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>CZ-67</td>
<td>10.7</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>SZ-15</td>
<td>10.4</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>CZ-72</td>
<td>11.7</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>SPZ-16</td>
<td>13.2</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>SPZ-84</td>
<td>13.6</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>CZ-95RD</td>
<td>15.2</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>SZ-18</td>
<td>16.2</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>CZ-95</td>
<td>15.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>SPZ-19.5</td>
<td>16.6</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>CZ-101</td>
<td>16.5</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>SZ-20</td>
<td>17.8</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>CZ-107</td>
<td>17.5</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>SPZ-22</td>
<td>18.3</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>SZ-22</td>
<td>19.6</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>CZ-113</td>
<td>18.4</td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>SCZ 19</td>
<td>18.8</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>SPZ-23.5</td>
<td>19.3</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>SZ-21</td>
<td>19.9</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>SZ-222</td>
<td>26.8</td>
<td>16.6</td>
<td></td>
</tr>
<tr>
<td>SZ-24</td>
<td>29.5</td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>SCZ 22</td>
<td>29.8</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>CZ-114RD</td>
<td>31.6</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>SKZ 20</td>
<td>31.7</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>SZ-27</td>
<td>32.4</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>SCZ 23</td>
<td>31.6</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>SPZ-23</td>
<td>31.3</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>CZ-114</td>
<td>31.6</td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>SKZ 22</td>
<td>33.4</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>SCZ 25</td>
<td>33.5</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>SPZ-26</td>
<td>34.8</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>SKZ 23</td>
<td>35.6</td>
<td>24.6</td>
<td></td>
</tr>
<tr>
<td>CZ-128</td>
<td>35.5</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>SCZ 26</td>
<td>35.3</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>CZ-134</td>
<td>37.2</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>SKZ 24</td>
<td>37.7</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>CZ-141</td>
<td>39.1</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td>SCZ 29</td>
<td>39.1</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>SKZ 25</td>
<td>40.1</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>CZ-148</td>
<td>40.9</td>
<td>29.4</td>
<td></td>
</tr>
<tr>
<td>SCZ 30</td>
<td>40.9</td>
<td>30.6</td>
<td></td>
</tr>
</tbody>
</table>

Bridge Design Manual Appendix 7.03.08 D.
10. Rectangular plate; three edges fixed, one edge (a) free

Roark’s Formulas for Stress and Strain, (Sixth Edition), page 469
Warren C. Young

(At $x = 0, z = 0$) Max $\sigma = \frac{-\beta \gamma lb^2}{t^2}$ and $R = \gamma lb$

(At $x = 0, z = b$) $\sigma = \frac{\beta lb^2}{t^2}$

(At $x = z = b$) $\sigma = \frac{-\gamma lb^2}{t^2}$ and $R = \gamma lb$

<table>
<thead>
<tr>
<th>a / b</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.020</td>
<td>0.081</td>
<td>0.173</td>
<td>0.321</td>
<td>0.727</td>
<td>1.226</td>
<td>2.105</td>
</tr>
<tr>
<td>β_2</td>
<td>0.016</td>
<td>0.066</td>
<td>0.148</td>
<td>0.259</td>
<td>0.484</td>
<td>0.605</td>
<td>0.519</td>
</tr>
<tr>
<td>β_3</td>
<td>0.031</td>
<td>0.126</td>
<td>0.286</td>
<td>0.511</td>
<td>1.073</td>
<td>1.568</td>
<td>1.982</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.114</td>
<td>0.230</td>
<td>0.341</td>
<td>0.457</td>
<td>0.673</td>
<td>0.845</td>
<td>1.012</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.125</td>
<td>0.248</td>
<td>0.371</td>
<td>0.510</td>
<td>0.859</td>
<td>1.212</td>
<td>1.627</td>
</tr>
</tbody>
</table>

10a. Uniform over entire plate

(At $x = 0, z = 0$) Max $\sigma = \frac{-\beta \gamma lb^2}{t^2}$ and $R = \gamma lb$

(At $x = z = 0.6b$ for $a > b$ or $z = 0.4b$ for $a \leq b$) $\sigma = \frac{-\gamma lb^2}{t^2}$ and $R = \gamma lb$

<table>
<thead>
<tr>
<th>a / b</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.020</td>
<td>0.080</td>
<td>0.164</td>
<td>0.277</td>
<td>0.501</td>
<td>0.710</td>
<td>1.031</td>
</tr>
<tr>
<td>β_2</td>
<td>0.031</td>
<td>0.110</td>
<td>0.198</td>
<td>0.260</td>
<td>0.370</td>
<td>0.433</td>
<td>0.455</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.115</td>
<td>0.230</td>
<td>0.334</td>
<td>0.424</td>
<td>0.544</td>
<td>0.615</td>
<td>0.674</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.125</td>
<td>0.250</td>
<td>0.344</td>
<td>0.394</td>
<td>0.399</td>
<td>0.409</td>
<td>0.393</td>
</tr>
</tbody>
</table>

10aa. Uniform over 2/3 of plate

(At $x = 0, z = 0$) Max $\sigma = \frac{-\gamma lb^2}{t^2}$ and $R = \gamma lb$

(At $x = z = 0.2b$) $\sigma = \frac{-\gamma lb^2}{t^2}$ and $R = \gamma lb$

<table>
<thead>
<tr>
<th>a / b</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.020</td>
<td>0.068</td>
<td>0.110</td>
<td>0.148</td>
<td>0.202</td>
<td>0.240</td>
<td>0.290</td>
</tr>
<tr>
<td>β_2</td>
<td>0.026</td>
<td>0.063</td>
<td>0.084</td>
<td>0.079</td>
<td>0.068</td>
<td>0.057</td>
<td>0.040</td>
</tr>
<tr>
<td>γ_1</td>
<td>0.115</td>
<td>0.210</td>
<td>0.257</td>
<td>0.291</td>
<td>0.316</td>
<td>0.327</td>
<td>0.335</td>
</tr>
<tr>
<td>γ_2</td>
<td>0.111</td>
<td>0.170</td>
<td>0.194</td>
<td>0.185</td>
<td>0.174</td>
<td>0.170</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Notation:
"a" and "b" refer to plate dimensions, and when used as subscripts for stress, they refer to the stresses in directions parallel to the sides "a" and "b", respectively. "\(\Phi \)" is a bending stress in pounds/square inch which is positive when tensile on the bottom and compressive on the top if loadings are considered vertically downward. "R" is the reaction force, in pounds/inch, normal to the plate surface exerted by the boundary support on the edge of the plate. "q" is the load per unit area in pounds/square inch.
DETAIL OF TEMPORARY SUPPORT FROM BELOW

EXIST. CONCRETE SLAB

EXIST. GIRDER

CHANNEL SHIM (TYP.)

JACK BEARING PLATE

SHIMS - FULL WIDTH & LENGTH OF CHANNEL (TYP.)

JACK BASE PLATE

COLUMN

COLUMN BASE PLATE

TIMBER FOOTING SHOWN CONCRETE FOOTING OPTIONAL

CHANNEL LAG BOLTED TO TIMBERS ACROSS TOP OF BOTH MATS EACH END

LEVEL UNDER AND 1'-6" OUTSIDE OF FOOTING OUTLINE

PLACE GRANULAR MATERIAL CLASS [II] AS REQUIRED FOR LEVELING, COMPACT TO NOT LESS THAN 95% OF ITS MAXIMUM UNIT WEIGHT.

LIMITS OF NATURAL GROUND COMPACTED TO NOT LESS THAN 95% OF ITS MAXIMUM UNIT WEIGHT TO A DEPTH OF 9".

ELEVATION

(FOOTING PLACED ON SOIL SHOWN)